Visualisierung von Ergebnissen aus Optimierungs- und DOE-Studien

Katharina Witowski, Heiner Müllerschön
DYNAmore GmbH, Stuttgart, Germany

Infotag Optimierung, DOE-Studien und Robustheitsanalysen, 21.06.2010
Overview

- Example: Optimization of a crash management system
 - Problem description
 - Visualization of Pareto optimal solutions
 - SOM
 - Parallel coordinate plot
 - Visualization of history curves and predicted histories

- Example: DOE study of a front crash
 - Problem description
 - Visualization of sensitivities
 - Correlation matrix
 - Linear ANOVA
 - Global sensitivities (Sobol)
 - Interpolator plot

Summary
Optimization of a Crash Management System

- Load case 1: AZT crash repair test
 - Mass barrier: 1000 kg
 - Mass vehicle: 1514.53 kg
- Load case 2: RCAR test

Infotag Optimierung, DOE-Studien und Robustheitsanalysen, 21.06.2010
Objective: optimize the energy absorption by plastic deformation of the bumper

Given maximal force level for load case AZT (barrier contact force)

Bumper has extruded section \rightarrow constant cross section
Problem Description

- 9 design variables
 - 4 Morphing parameters (ANSA as preprocessor in LS-OPT)
 - 5 sheet thicknesses

Infotag Optimierung, DOE-Studien und Robustheitsanalysen, 21.06.2010
Some resulting bumper shapes of ANSA morphing
3 Objectives

- MSE_Force (load case AZT)
 \[\text{sum of squares error between calculated contact force curve and given constant contact force } c \]
Problem Description

- 3 objectives
 - Max_Intrusion (load case RCAR)
 - Intrusion = displacement of center of mass of vehicle
 - displacement of inner edge of bumper
 - Total mass of the bumper
 - constraint: contact force < C

Multi-Objective optimization → set of Pareto optimal solutions (metamodel-based)
Self organizing maps (SOM) → Conflicting objectives
- Unsupervised neural network algorithm
- Projects n-dimensional data onto two-dimensional array of nodes
- Each node is associated with n-dimensional weight vector
- Algorithm sorts and adapts weight vectors such that similar data is mapped to the closest node
- Component map: visualizes one component of weight vector by coloring the grid according to the value of selected component
Visualization

- SOM (Self Organizing Maps) → (inverse) correlation of entities
- Component maps of objectives and constraint

Infotag Optimierung, DOE-Studien und Robustheitsanalysen, 21.06.2010
Visualization

- Parallel Coordinate Plot → Reduce number of suitable solutions by restricting ranges of objectives

Feasible points Infeasible points with respect to selected ranges

variables constraint objectives
Visualization

- History curves: contact force curve

 - All iterations, colored by feasibility
 - Only feasible runs

 - All iterations, colored by variable

 - All iterations, colored by iterations

Infotag Optimierung, DOE-Studien und Robustheitsanalysen, 21.06.2010
Visualization

- Predicted Histories – extension of metamodel concept to curve data

histories from simulation runs

time = t

calculation for equidistant time values → predicted history

Response surface to get values for predicted history at time t
Visualization

- Predicted History colored by variable
 - curves for the whole range of the selected variable are displayed
 - visualizes the effect of a single parameter on the curve
Visualization

- Predicted History Plot with variable values evaluated from a selected Pareto optimal point

- Selection of suitable points out of the set of Pareto optimal solutions
 - Store variable values in a .csv file
 - user-defined sampling in LS-OPT
 - verification runs for the predicted results can be performed
DOE Study of a Front Crash

- Load case: frontal impact of a car on a rigid barrier
- Model from NCAC (National Crash Analysis Center)
 http://www.ncac.gwu.edu
Problem description

- 6 design variables
 - sheet thicknesses of highlighted parts

- Responses
 - Chest acceleration of dummy
 - Forces evaluated at 2 cross sections
 - Constraint on mass of vehicle

- 250 LS-DYNA simulations
- Sensitivities evaluated on RBF metamodel
Visualization

- Correlation Matrix
 - Scatter plots, histograms, linear correlation coefficient evaluated using values from simulations

→ *lb1* has a strong effect onto the section forces
→ all variables are insignificant on the chest acceleration
Visualization

- **ANOVA (Analysis of Variance)** calculated on metamodel

- Not meaningful → large red error bars

- *lb1* strong effect on section forces → agreement with correlation matrix results
Visualization

- Non-linear sensitivities: global sensitivities (Sobol)
- Each bar represents the contribution of a particular variable to the variance of the respective response

\[lb1 \]
strongest effect on whole problem

\[lb1 \]
strongest effect on section forces
Nonlinear sensitivities

\(lb1 \) also has a strong effect on the chest acceleration.

Total variance of chest acceleration small → correlation coefficient small.
- linear and non-linear sensitivities → \(lb1 \) is the most sensitive variable on \(SECFORC_front_resp \),
- percentage in comparison to the other variables is higher for the non-linear correlation

→ quadratic correlation is not detected completely by linear correlation
Visualization

- Interpolator Plot – 2D surface plots
 - comparing the influence of variables on several responses
 - find feasible regions in the design space

- feasible
- infeasible
- predicted value for selected variable values
The post-processing features of LS-OPT 4.1 have improvements in

- visualizing results of multi-objective optimization
 - SOM plot completes the visualization of high dimensional data together with
 - Tradeoff Plot
 - Parallel Coordinate Plot
 - HRV Plot
 already available in LS-OPT 4.0

- visualization of curve data
 - histories from simulation results
 - extension of the meta-models on curve data
 → predicted histories

- visualization of sensitivities
 - features to visualize non-linear sensitivities (Sobol)