DSI version 1.0 RADIOSS / LS-DYNA / NASTRAN Conversion
August, 2007
The RADIOSS interface was originally released in VPG 2.0 as a complete RADIOSS interface, supporting fixed format input files from RADIOSS V2.1, V2.2, V2.3, V3.1, V4.1 and V4.4, and has the ability to write RADIOSS V3.1, V4.1 and V4.4. DSI not only reads RADIOSS files but also allows translation of RADIOSS files to NASTRAN or LS-DYNA960 format. The capability of this interface has been improved in DSI 1.0, to allow the import/export of RADIOSS and translation into LS-DYNA version 970.
When reading in a RADIOSS file DSI, adopts a RADIOSS environment with RADIOSS terminology. DSI allows model manipulation of RADIOSS materials, element properties,
boundary conditions, local coordinates, loads, initial velocities, contact and rigid walls.
To translate a RADIOSS file to another analysis format such as LS-DYNA or NASTRAN, the user changes the analysis program in the Setup Menu. This will translate all RADIOSS materials, element properties, boundary conditions, etc. to the new analysis environment. DSI will prompt the user for certain user-defined information in the translation.
The translation of the code requires that certain assumptions be made in the equivalencies of elements properties, contacts, etc. Where no equivalency could be found, due to the fact that one code supports or defines an entity that another code does not, the closest substitution is made. In these cases, the user should check the database translation to be sure that the entity is defined adequately in the translated model (a complete list of all translations follows). When converting RADIOSS to LS-DYNA or vice versa, the user should always check the definition of spring elements, loading conditions, air bags, seat belt parts, dummies and barriers. These entities are either unsupported in the translation or the adequacy of the translation is questionable.
A complete list of all translations follows.
1. The new RADIOSS interface template supports all RADIOSS cards in version 4.4, 4.1, 3.1 and 2.3.
2. DSI 1.0 allows model manipulation of RADIOSS materials, element properties, boundary conditions, local coordinates, loads, initial velocities, contact and rigid walls.
3. DSI 1.0 also supports the following functions: accelerometer, sensor, fixed velocity, section and monitored volume.
4. Rigid body and cylindrical joint elements were enhanced to use node set.
5. Multiple RADIOSS input files can be read at one time and directly read/write RADIOSS input files in DYNA970/NASTRAN database.
1. Primary Nodal Rigid Body should be re-calculated by DSI 1.0.
2. Beam, Truss and Spring elements in Radioss converts to Beam element in LS-DYNA V970.
3. Joint element in Radioss convert to CONSTRAINED_NODAL_BODY and one CONSTRAINED_JOINT_CYLINDRICAL when number of node is equal 4. Otherwise DSI converts one CONSTRAINED_NODAL_RIGID_BODY.
4. Rigid Body element without mass and inertia in Radioss convert to CONSTRAINED_NODAL_RIGID_BODY, but when the Rigid Body element with mass and inertia in Radioss converts to CONSTRAINED_NODAL_RIGID_BODY_INERTIA. The Radioss primary node number(RBID) be used as the parameter NODEID on card 2 of CONSTRAINED_NODAL_RIGID_BODY_INERTIA.
1. Delete VOID, RIVET property in Radioss.
2. BEAM converts SECTION_BEAM(RESULTANT), TRUSS converts SECTION_BEAM(TRUSS)
and SPRING converts SECTION_BEAM(DISCRETE)
3.SPRING elements(TYPE 4, 8, 12 and 13) in Radioss convert into DYNA V970 material Type196(*MAT_GENERAL_SPRING_DISCRETE_BEAM). This Model permits elastic and elastoplastic spring with damping to be represented with a discrete beam element type 6. For elastic behavior, a load curve defines force or moment versus displacement or rotation. For inelastic behaivor, a load curve yield force or moment versus plastic deflection or rotation, which can vary in tension and compression.
1. Radioss material type 2-ELASTIC_PLASTIC converts to MAT_SIMPLIFIED_JOHNSON_COOK.
2. Radioss material type 21-ELASTIC_PLASTIC_DP converts to DYNA V970 material type 57(MAT_LOW_DENSITY_FOAM).
3. Radioss material type 28-ORTHOTROPIC converts to DYNA V970 material type26 MAT_HONEYCOMB in relative SECTION_SOLID and creates new HOURGLASS card in relative PART’s HGID field in DYNA970 input file. The Radioss yield functions for the HONEYCOMB material which as the abscissa values must be converted into DYNA V970 curves with abscissa values.
4. AIRBAG(MONITORED VOLUMESS) : MONITORED VOLUMES in Radioss converts SIRBAG_SIMPLE_AIRBAG_MODEL and replace the original airbag material type 27-ELASTIC_PLASTIC_BRITTLE converts to DYNA V970 material type 34 MAT_FABLIC.
5. SEATBELT with Radioss material type 1-ELASTIC converts to DYNA V970 material type 34 MAT_FABLIC with very small young’s modulus.
1. All the Radioss contacts convert to CONTACT_AUTOMATIC_SINGLE_SURFACE contact in Dyna and create a new one more CONTACT_AUTOMATIC_SINGLE_SURFACE for full model.
RADIOSS Interface Notes:
DSI 1.0 SUPPORTS ALL INPUT CARDS OF RADIOSS V4.1 FIXED FORMAT.
RADIOSS' Entity Location in DSI GUI
CONTROL VARABLES RADIOSS MISC./CONTROL CARDS"
MATERIALS MATERIAL PROPERTY
BOUNDARY CONDITIONS BOUNDARY CONDITIONS/SPC
SKEW FRAMES UTIL/COORDINATE SYSTEM
PROPERTY SETS ELEMENT PROPERTY
FUNCTIONS UTIL/LOAD CURVE
LOADS BOUNDARY CONDITIONS/LOADING
INITIAL VELOCITIES BOUNDARY CONDITIONS/INITIAL VELOCITY
ACCELEROMETERS RADIOSS MISC./ACCELEROMETERS
SENSORS "RADIOSS MISC./SENSORS"
GRAVITY BOUNDARY CONDITIONS/GRAVITY"
INTERFACES CONTACT
RIGID WALLS CONTACT
RIGID BODIES ELEMENT OPTIONS
ADDED MASSES ELEMENT OPTIONS
IMPOSED VELOCITIES BOUNDARY CONDITIONS/IMPOSED VELOCITY
RIVETS SPOTWELDS ELEMENT OPTIONS
SECTIONS RADIOSS MISC./SECTION CARDS
CYLINDRICAL JOINTS ELEMENT OPTIONS
MONITORED VOLUMES RADIOSS MISC./MONITORED VOLUMES.
2.1 ELEMENT:
RADIOSS (V4.1) ===> DYNA (V970)
BEAM BEAM
TRUSS BEAM
SOLID SOLID
SHELL SHELL
SPRING BEAM
MASS MASS
JOINT If number of node is equal 4, we will
convert it into 2 CONSTRAINED_NODAL_
RIGID_BODY and 1 CONSTRAINED_JOINT_
CYLINDRICAL. Otherwise we will convert
it into 1 CONSTRAINED_NODAL_RIGID_BODY.
RIGID BODY CONSTRAINED_NODAL_RIGID_BODY
(Doesn't have mass and inertia.)
CONSTRAINED_NODAL_RIGID_BODY_INERTIA
(Including mass and inertia. The RADIOSS
primary node number (RBID) be used as
the parameter NODEID on card 2 of
*CONSTRAINED_NODAL_RIGID_BODY_INERTIA.)
SPOTWELD CONSTRAINED_SPOTWELD
2.2 ELEMENT PROPERTY:
Delete VOID, RIVET property. Convert spring stiffness into DYNA material.
RADIOSS (V4.1) ===> DYNA (V970)
1 -SHELL SECTION_SHELL
2 -TRUSS SECTION_BEAM (truss)
3 -BEAM SECTION_BEAM (resultant)
4 -SPRING SECTION_BEAM (discrete)
6 -ORTHOTROPIC SOLID SECTION_SOLID
8 -GENERAL SPRING SECTION_BEAM (discrete)
9 -ORTHOTROPIC SHELL SECTION_SHELL
10-COMP. SHELL SECTION_SHELL
11-COMP. SHELL SECTION_SHELL
12-3-NODES SPRING SECTION_BEAM (discrete)
13-BEAM TYPE SPRING SECTION_BEAM (discrete)
14-GENERAL SOLID SECTION_SOLID
CONVERTS RADIOSS SPRING PROPERTY(TYPE 4,8,12,13) INTO DYNA's MATERIAL 196.
IF H=0, N1=0: LINEAR ELASTIC SPRING
K(DYNA) = K(RADIOSS)
D(DYNA) = C(RADIOSS)
IF H=0, N1>0: NONLINEAR ELASTIC SPRING
K(DYNA) = A(RADIOSS) (IF A(RADIOSS)=0.0, THEN K(DYNA)=1.0)
C2(DYNA) = B(RADIOSS)/A(RADIOSS)
FLCID=GLCID = N1(RADIOSS)
HLCID = N2(RADIOSS)
DLE(DYNA) = D(RADIOSS)
IF H=1, N1>0:
K(DYNA) = K(RADIOSS)
A(RADIOSS) = 1.0 IS ASSUMED
C2(DYNA) = B(RADIOSS)
FLCID=GLCID = N1(RADIOSS)
HLCID = N2(RADIOSS)
DLE(DYNA) = D(RADIOSS)
CONVERT RADIOSS SPRING INTO DYNA BEAM.
IN ALL CASES, IF THE LENGTH OF SPRING IS FINITE, SET SCOOR IN
*SECTION_BEAM TO 2. IF THE LENGTH IS VERY SMALL(<=0.000001) OR ZERO,
SET SCOOR TO 0.
2.3 MATERIAL PROPERTY:
RADIOSS(V4.1) ===> DYNA(V970)
0 -VOID 1 -MAT_ELASTIC
1 -ELASTIC 1 -MAT_ELASTIC
2 -ELASTIC_PLASTIC 98-MAT_SIMPLIFIED_JOHNSON_COOK
3 -ELASTIC_PLASTIC_HYDRODYNAMIC 10-MAT_ELASTIC_PLASTIC_HYDRO
4 -JOHNSON_COOK 15-MAT_JOHNSON_COOK
6 -HYDRODYNAMIC_VISCOUS 9 -MAT_NULL
10-ELASTIC_PLASTIC_DP 63-MAT_CRUSHABLE_FOAM
14-ELASTIC_PLASTIC_ORTHOTROPIC 2 -MAT_ORTHOTROPIC_ELASTIC
19-ELASTIC_ORTHOTROPIC 130 -MAT_SPECIAL_ORTHOTROPIC
21-ELASTIC_PLASTIC_DP 57-MAT_LOW_DENSITY_FOAM
There is no direct conversion of RADIOSS mat 21 to *MAT_LOW_DENSITY_FOAM.
An example input for a mat57 seat foam is attached.
$ UNITS: kg, mm, ms, GPa
*MAT_LOW_DENSITY_FOAM
$ seat foam
571258.8200E-08 0.0045 2222 0.4 0.0 0.0 .05
0.0 0.0 0.0 0.0 0.0 0.0
*DEFINE_CURVE
2222 0 1.0 0.01 0.0 0.0 0
0.0 0.0
0.0625 0.119800001
0.122500002 0.383390009
0.177499995 0.377400011
0.234999999 0.413399994
0.280699998 0.444999993
0.344999999 0.466100007
0.397000015 0.497999996
0.444900006 0.53670001
0.49000001 0.561600029
0.528999984 0.601000011
0.564999998 0.653999984
0.597000003 0.721000016
0.622500002 0.818000019
0.644900024 0.897000015
0.660000026 0.949999988
0.666999996 0.989000022
0.670000017 0.99000001
0.671999991 1.0
0.699000001 1.20000005
0.75 1.51999998
0.800000012 2.19000006
0.808000028 2.30299997
22-ELASTIC_PLASTIC 81-MAT_PLASTICITY_WITH_DAMAGE
23-ELASTIC_PLASTIC 81-MAT_PLASTICITY_WITH_DAMAGE
24-ELASTIC_PLASTIC_BRITTLE 16-MAT_PSEUDO_TENSOR
25-ELASTIC_PLASTIC_ORTHOTROPIC 2 -MAT_ORTHOTROPIC_ELASTIC
27-ELASTIC_PLASTIC_BRITTLE 81-MAT_PLASTICITY_WITH_DAMAGE
28-ORTHOTROPIC 26-MAT_HONEYCOMB
We set DYNA's value PR=0.0, SIGY=1.0, VF=0.2, MU=0.2, and ELFORM=1 in relative *SECTION_SOLID card. We create a *HOURGLASS card with IHQ=4, and put it into relative *PART's HGID field.
In RADIOSS, if the relative element property ID is 0 or the element property type is not TYPE 6, we will set the material directions 1,2,3 align with the global axes X,Y,Z, AOPT=2, (A1,A2,A3)=(1,0,0), (D1,D2,D3)=(0,1,0). Otherwise we will set AOPT=0, and map the RADIOSS 1,2,3 axes to the LS-DYNA b,c,a axes. The RADIOSS yield functions for the honeycomb material which have mu as the abscissa values must be converted into LS-DYNA curves with mu/(1+mu) as the abscissa values. In the discussion above, it is assumed that the angle PHI in the RADIOSS orthotropic solid property set data is set to zero. If PHI is nonzero, further thought must be given to the conversion.
32-ELASTIC_PLASTIC_ORTHOTROPIC 3 -MAT_PLASTIC_KINEMATIC
33-VISCOPLASTIC 53-MAT_CLOSED_CELL_FOAM
34-VISCOELASTIC 61-MAT_KELVIN-MAXWELL_VISCOELASTIC
35-VISCOELASTIC 76-MAT_GENERAL_VISCOELASTIC
36-ELASTIC_PLASTIC 24-MAT_PIECEWISE_LINEAR_ PLASTICITY
38-VISCOELASTIC 76-MAT_GENERAL_VISCOELASTIC
40-VISCOELASTIC 76-MAT_GENERAL_VISCOELASTIC
42-HYPERELASTIC 77(5)-MAT_OGDEN_RUBBER
43-ELASTIC_PLASTIC_ORTHOTROPIC 24-MAT_PIECEWISE_LINEAR_ PLASTICITY
2.4 BOUNDARY AND LOAD CONDITION:
RADIOSS (V4.1) ===> DYNA (V970)
SPC BOUNDARY_SPC_SET
CONCENTRATED LOAD LOAD_NODE_SET
PRESSURE LOAD LOAD_SEGMENT_SET
INITIAL VELOCITY INITIAL_VELOCITY
IMPOSED VELOCITY BOUNDARY_PRESCRIBED_MOTION_SET
2.5 CONTACT AND RIGIDWALL:
Delete RIGIDWALL which not include node.
Convert slave/master shell material/property set into segment set.
RADIOSS(V4.1) ===> DYNA(V970)
2 -TIED CONTACT_AUTOMATIC_SINGLE_SURFACE
3 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
5 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
6 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
7 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
8 -SLIDE CONTACT_DRAWBEAD
10-TIED/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
11-SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
Creates a new CONTACT_AUTOMATIC_SINGLE_SURFACE.
Set all CONTACT_AUTOMATIC_SINGLE_SURFACE's SOFT=1, IGNORE=1.
RIGIDWALL RIGIDWALL_GEOMETRIC
2.6 AIRBAG (MONITORED VOLUMES):
MONITORED VOLUMES AIRBAG_SIMPLE_AIRBAG_MODEL
REPLACES THE ORIGINAL MATERIAL WITH *MAT_FABRIC.
2.7 SEATBELT:
CONVERTS RADIOSS'S MATERIAL TYPE 1 WITH VERY SMALL YOUNG'S MODULUS INTO
DYNA'S *MAT_FABRIC.
2.8 OTHERS:
Delete TRUSS SET, MAT SET, PROP SET.
Delete ACCELEROMETER, MONITORED VOLUME, SECTIONS,
SENSOR, CONTROL CARDS.
RADIOSS (V4.1) ===> DYNA (V970)
FUNCTION DEFINE_CURVE
SKEW (moving) DEFINE_COORDINATE_NODES
SKEW (fixed) DEFINE_COORDINATE_VECTOR
3.1 ELEMENT:
Delete INERTIA elements.
DYNA (V970) ===> RADIOSS (V4.1)
BEAM BEAM
SOLID SOLID
SHELL SHELL
T-SHELL SOLID
DISCRETE SPRING
(VID is converted into the third node)
MASS MASS
JOINT JOINT
CONSTRAINED_NODAL_RIGID_BODY RIGID BODY
CONSTRAINED_NODE_SET RIGID BODY
CONSTRAINED_SPOTWELD SPOTWELD
SEATBELT BEAM
1.0 ELEMENT PROPERTY:
Delete SPH section.
Convert spring stiffness into RADIOSS element property.
DYNA (V970) ===> RADIOSS (V4.1)
SECTION_BEAM (integrated) 3 -BEAM
SECTION_BEAM (resultant) 3 -BEAM
SECTION_BEAM (discrete) 3 -BEAM
SECTION_BEAM (truss) 3 -BEAM
SECTION_BEAM (spotweld) 3 -BEAM
SECTION_DISCRETE 4 -SPRING
SECTION_SHELL 1 -SHELL
SECTION_SHELL_ALE 1 -SHELL
SECTION_SOLID 14-GENERAL SOLID
SECTION_SOLID_ALE 14-GENERAL SOLID
SECTION_TSHELL 14-GENERAL SOLID
SECTION_SEATBELT 3 -BEAM
3.3 MATERIAL PROPERTY:
DYNA (V970) ===> RADIOSS (V4.1)
1 -MAT_ELASTIC 1 -ELASTIC
1 -MAT_ELASTIC_FLUID 1 -ELASTIC
2 -MAT_ORTHOTROPIC_ELASTIC 14-ELASTIC_PLASTIC_ORTHOTROPIC
2 -MAT_ANISOTROPIC_ELASTIC 1 -ELASTIC
3 -MAT_PLASTIC_KINEMATIC 2 -ELASTIC_PLASTIC
4 -MAT_ELASTIC_PLASTIC_THERMAL 2 -ELASTIC_PLASTIC
5 -MAT_SOIL_AND_FOAM 33-VISCOPLASTIC
6 -MAT_VISCOELASTIC 34-VISCOELASTIC
7 -MAT_BLATZ-KO_RUBBER 1 -ELASTIC
8 -MAT_HIGH_EXPLOSIVE_BURN 1 -ELASTIC
9 -MAT_NULL 6 -HYDRODYNAMIC_VISCOUS
10-MAT_ELASTIC_PLASTIC_HYDRO 3 -ELASTIC_PLASTIC_HYDRODYNAMIC
10(2) - MAT_ELASTIC_PLASTIC_HYDRO_SPALL 3 -ELASTIC_PLASTIC_HYDRODYNAMIC
11-MAT_STEINBERG 1 -ELASTIC
11(2) - MAT_STEINBERG_LUND 1 -ELASTIC
12-MAT_ISOTROPIC_ELASTIC_PLASTIC 2 -ELASTIC_PLASTIC
13-MAT_ISOTROPIC_ELASTIC_FAILURE 2 -ELASTIC_PLASTIC
14-MAT_SOIL_AND_FOAM_FAILURE 33-VISCOPLASTIC
15-MAT_JOHNSON_COOK 4 -JOHNSON_COOK
16-MAT_PSEUDO_TENSOR 24-ELASTIC_PLASTIC_BRITTLE
17-MAT_ORIENTED_CRACK 2 -ELASTIC_PLASTIC
18-MAT_POWER_LAW_PLASTICITY 2 -ELASTIC_PLASTIC
19-MAT_STRAIN_RATE_DEPENDENT_PLASTICITY 2 -ELASTIC_PLASTIC
20-MAT_RIGID 1 -ELASTIC
21-MAT_ORTHOTROPIC_THERMAL 14-ELASTIC_PLASTIC_ORTHOTROPIC
22-MAT_COMPOSITE_DAMAGE 14-ELASTIC_PLASTIC_ORTHOTROPIC
23-MAT_TEMPERATURE_DEPENDENT 14-ELASTIC_PLASTIC_ORTHOTROPIC
_ORTHOTROPIC
24-MAT_PIECEWISE_LINEAR_PLASTICITY 36-ELASTIC_PLASTIC
25-MAT_GEOLOGICAL_CAP_MODEL 24-ELASTIC_PLASTIC_BRITTLE
26-MAT_HONEYCOMB 2 -ELASTIC_PLASTIC
27-MAT_MOONEY-RIVLIN_RUBBER 1 -ELASTIC
28-MAT_RESULTANT_PLASTICITY 2 -ELASTIC_PLASTIC
29-MAT_FORCE_LIMITED 2 -ELASTIC_PLASTIC
30-MAT_CLOSED_FORM_SHELL _PLASTICITY 2 -ELASTIC_PLASTIC
31-MAT_FRAZER_NASH_RUBBER_MODEL 1 -ELASTIC
32-MAT_LAMINATED_GLASS 2 -ELASTIC_PLASTIC
33-MAT_BARLAT_ANISOTROPIC_PLASTICITY 2 -ELASTIC_PLASTIC
33(2) - MAT_BARLAT_YLD96 2 -ELASTIC_PLASTIC
34-MAT_FABRIC 14-ELASTIC_PLASTIC_ORTHOTROPIC
35-MAT_PLASTIC_GREEN-NAGHDI_RATE 2 -ELASTIC_PLASTIC
36-MAT_3-PARAMETER_BARLAT 2 -ELASTIC_PLASTIC
37-MAT_TRANSVERSELY_ANISOTROPIC 2 -ELASTIC_PLASTIC
_ELASTIC_PLASTIC
38-MAT_BLATZ-KO_FOAM 33-VISCOPLASTIC
39-MAT_FLD_TRANSVERSELY_ANISOTROPIC 2 -ELASTIC_PLASTIC
40-MAT_NONLINEAR_ORTHOTROPIC 14-ELASTIC_PLASTIC_ORTHOTROPIC
41-MAT_USER_DEFINED_MATERIAL_MODELS 1 -ELASTIC
51-MAT_BAMMAN 2 -ELASTIC_PLASTIC
52-MAT_BAMMAN_DAMAGE 2 -ELASTIC_PLASTIC
53-MAT_CLOSED_CELL_FOAM 33-VISCOPLASTIC
54-MAT_ENHANCED_COMPOSITE_DAMAGE 14-ELASTIC_PLASTIC_ORTHOTROPIC
57-MAT_LOW_DENSITY_FOAM 33-VISCOPLASTIC
58-MAT_LAMINATED_COMPOSITE_FABRIC 14-ELASTIC_PLASTIC_ORTHOTROPIC
59-MAT_COMPOSITE_FAILURE_SHELL_MODEL 14-ELASTIC_PLASTIC_ORTHOTROPIC
59-MAT_COMPOSITE_FAILURE_SOLID_MODEL 14-ELASTIC_PLASTIC_ORTHOTROPIC
60-MAT_ELASTIC_WITH_VISCOSITY 1 -ELASTIC
61-MAT_KELVIN-MAXWELL_VISCOELASTIC 34-VISCOELASTIC
62-MAT_VISCOUS_FOAM 33-VISCOPLASTIC
63-MAT_CRUSHABLE_FOAM 10-ELASTIC_PLASTIC_DP
64-MAT_RATE_SENSITIVE_POWERLAW 2 -ELASTIC_PLASTIC
_PLASTICITY
65-MAT_MODIFIED_ZERILLI _ARMSTRONG 2 -ELASTIC_PLASTIC
66-MAT_LINEAR_ELASTIC_DISCRETE_BEAM 1 -ELASTIC
67-MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM 1 -ELASTIC
68-MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM 2 -ELASTIC_PLASTIC
69-MAT_SID_DAMPER_DISCRETE_BEAM 1 -ELASTIC
70-MAT_HYDRAULIC_GAS_DAMPER 1 -ELASTIC
_DISCRETE_BEAM
71-MAT_CABLE_DISCRETE_BEAM 1 -ELASTIC
72-MAT_CONCRETE_DAMAGE 24-ELASTIC_PLASTIC_BRITTLE
73-MAT_LOW_DENSITY_VISCOUS_FOAM 33-VISCOPLASTIC
74-MAT_ELASTIC_SPRING_DISCRETE_BEAM 1 -ELASTIC
75-MAT_BILKHU/DUBOIS_FOAM 33-VISCOPLASTIC
76-MAT_GENERAL_VISCOELASTIC 35-VISCOELASTIC
77-MAT_HYPERELASTIC_RUBBER 42-HYPERELASTIC
77-MAT_OGDEN_RUBBER 42-HYPERELASTIC
78-MAT_SOIL_CONCRETE 10-ELASTIC_PLASTIC_DP
79-MAT_HYSTERETIC_SOIL 24-ELASTIC_PLASTIC_BRITTLE
80-MAT_RAMBERG_OSGOOD 1 -ELASTIC
81-MAT_PLASTICITY_WITH_DAMAGE 22-ELASTIC_PLASTIC
83-MAT_FU_CHANG_FOAM 33-VISCOPLASTIC
86-MAT_ORTHOTROPIC_VISCOELASTIC 14-ELASTIC_PLASTIC_ORTHOTROPIC
87-MAT_CELLULAR_RUBBER 1 -ELASTIC
88-MAT_MTS 1 -ELASTIC
89-MAT_PLASTICITY_POLYMER 2 -ELASTIC_PLASTIC
90-MAT_ACOUSTIC 1 -ELASTIC
94-MAT_INELASTIC_SPRING_DISCRETE_BEAM 1 -ELASTIC
96-MAT_BRITTLE_DAMAGE 24-ELASTIC_PLASTIC_BRITTLE
98-MAT_SIMPLIFIED_JOHNSON_COOK 2 -ELASTIC_PLASTIC
100-MAT_SPOTWELD 1 -ELASTIC
103-MAT_ANISOTROPIC_VISCOPLASTIC 33-VISCOPLASTIC
104-MAT_DAMAGE_1 22-ELASTIC_PLASTIC
105-MAT_DAMAGE_2 22-ELASTIC_PLASTIC
116-MAT_COMPOSITE_LAYUP 14-ELASTIC_PLASTIC_ORTHOTROPIC
117-MAT_COMPOSITE_MATRIX 1 -ELASTIC
118-MAT_COMPOSITE_DIRECT 1 -ELASTIC
123-MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY 36-ELASTIC_PLASTIC
124-MAT_PLASTICITY_COMPRESSION_TENSION 2 -ELASTIC_PLASTIC
126-MAT_MODIFIED_HONEYCOMB 2 -ELASTIC_PLASTIC
127-MAT_ARRUDA_BOYCE_RUBBER 42-HYPERELASTIC
128-MAT_HEART_TISSUE 1 -ELASTIC
129-MAT_LUNG_TISSUE 1 -ELASTIC
130-MAT_SPECIAL_ORTHOTROPIC 19-ELASTIC_ORTHOTROPIC
OTHER MATERIAL 1 -ELASTIC
3.4 BOUNDARY AND LOAD CONDITION:
DYNA (V970) ===> RADIOSS (V4.1)
BOUNDARY_SPC_NODE SPC
BOUNDARY_SPC_SET SPC
INITIAL_VELOCITY INITIAL VELOCITY
INITIAL_VELOCITY_NODE INITIAL VELOCITY
INITIAL_VELOCITY_GENERATION INITIAL VELOCITY
LOAD_NODE_POINT CONCENTRATED LOAD
(Deleted, when DOF is equal to 4 or 8)
LOAD_NODE_SET CONCENTRATED LOAD
(Deleted, when DOF is equal to 4 or 8)
LOAD_SEGMENT PRESSURE LOAD
LOAD_SEGMENT_SET PRESSURE LOAD
LOAD_SHELL_ELEMENT PRESSURE LOAD
LOAD_SHELL_SET PRESSURE LOAD
BOUNDARY_PRESCRIBED_MOTION IMPOSED VELOCITY
_NODE (velocity)
BOUNDARY_PRESCRIBED_MOTION IMPOSED VELOCITY
_RIGID (velocity)
BOUNDARY_PRESCRIBED_MOTION IMPOSED VELOCITY
_RIGID_LOCAL (velocity)
BOUNDARY_PRESCRIBED_MOTION IMPOSED VELOCITY
_SET (velocity)
3.5 CONTACT AND RIGIDWALL:
Delete CONTACT_ENTITY, CONTACT_INTERIOR, CONTACT_1D,
CONTACT_2D_AUTOMATIC_SINGLE_SURFACE,
CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE,
CONTACT_2D_AUTOMATIC_NODE_TO_SURFACE,
CONTACT_2D_AUTOMATIC_SURFACE_IN_CONTINUUM,
CONTACT_2D_PENALTY,
CONTACT_2D_PENALTY_FRICTION,
CONTACT_2D_SLIDING_ONLY,
CONTACT_2D_SLIDING_VOIDS,
CONTACT_2D_TIED_SLIDING,
CONTACT_GEBOD.
Convert slave type 2,3,5,6 into segment set.
Convert master type 2,3 into segment set.
DYNA (V970) ===> RADIOSS (V4.1)
CONTACT_AIRBAG_SINGLE_SURFACE 7 -SLIDE/VOID
CONTACT_AUTOMATIC_GENERAL 7 -SLIDE/VOID
CONTACT_AUTOMATIC_NODES_TO 7 -SLIDE/VOID
_SURFACE
CONTACT_AUTOMATIC_ONE_WAY 7 -SLIDE/VOID
_SURFACE_TO_SURFACE
CONTACT_AUTOMATIC_SINGLE 7 -SLIDE/VOID
_SURFACE
CONTACT_AUTOMATIC_SURFACE 7 -SLIDE/VOID
_TO_SURFACE
CONTACT_CONSTRAINT_NODES 7 -SLIDE/VOID
_TO_SURFACE
CONTACT_CONSTRAINT_SURFACE 7 -SLIDE/VOID
_TO_SURFACE
CONTACT_DRAWBEAD 8 -SLIDE
CONTACT_ERODING_NODES_TO_SURFACE 7 -SLIDE/VOID
CONTACT_ERODING_SINGLE_SURFACE 7 -SLIDE/VOID
CONTACT_ERODING_SURFACE_TO 7 -SLIDE/VOID
_SURFACE
CONTACT_FORCE_TRANSDUCER 7 -SLIDE/VOID
_PENALTY
CONTACT_FORCE_TRANSDUCER 7 -SLIDE/VOID
_CONSTRAINT
CONTACT_FORMING_NODES_TO_SURFACE 7 -SLIDE/VOID
CONTACT_FORMING_ONE_WAY 7 -SLIDE/VOID
_SURFACE_TO_SURFACE
CONTACT_FORMING_SURFACE_TO_SURFACE 7 -SLIDE/VOID
CONTACT_NODES_TO_SURFACE 7 -SLIDE/VOID
CONTACT_ONE_WAY_SURFACE_TO 7 -SLIDE/VOID
_SURFACE
CONTACT_RIGID_NODES_TO_RIGID_BODY 7 -SLIDE/VOID
CONTACT_RIGID_BODY_ONE_WAY_TO 6 -SLIDE/VOID
_RIGID_BODY
CONTACT_RIGID_BODY_TWO_WAY_TO 6 -SLIDE/VOID
_RIGID_BODY
CONTACT_SINGLE_EDGE 7 -SLIDE/VOID
CONTACT_SINGLE_SURFACE 7 -SLIDE/VOID
CONTACT_SLIDING_ONLY 7 -SLIDE/VOID
CONTACT_SLIDING_ONLY_PENALTY 7 -SLIDE/VOID
CONTACT_SURFACE_TO_SURFACE 7 -SLIDE/VOID
CONTACT_TIEBREAK_NODES_TO 7 -SLIDE/VOID
_SURFACE
CONTACT_TIEBREAK_SURFACE_TO 7 -SLIDE/VOID
_SURFACE
CONTACT_TIED_NODES_TO_SURFACE 7 -SLIDE/VOID
CONTACT_TIED_SHELL_EDGE_TO 7 -SLIDE/VOID
_SURFACE
CONTACT_TIED_SURFACE_TO_SURFACE 2 -TIED
CONTACT_TIED_SURFACE_TO_SURFACE_FAILURE 2 -TIED
RIGIDWALL RIGIDWALL
3.6 OTHERS:
Delete T-SHELL SET.
Delete all other cards that can't be converted.
DYNA (V970) ===> RADIOSS (V4.1)
DEFINE_COORDINATE_NODES SKEW_MOV
DEFINE_COORDINATE_SYSTEM SKEW_MOV
DEFINE_COORDINATE_VECTOR SKEW_FIX
DEFINE_CURVE FUNCTION
4.1 ELEMENT:
General Comments: When some RBE2s share the common nodes, merge them into one RBE2. Delete RBE3 & CGAP elements.
NASTRAN ===> DYNA (V970)
CBAR BEAM
RBE2 CONSTRAINED_NODAL_RIGID_BODY, CONSTRAINED_NODE_SET (According to the Dof)
SHELL SHELL
SOLID SOLID
CELAS2 DISCRETE
(Create DEFINE_SD_ORIENTATION to define the spring direction)
CELAS1 DISCRETE
(Create DEFINE_SD_ORIENTATION to define the spring direction)
RBAR CONSTRAINED_SPOTWELD
CONM2 MASS & INERTIA
CBEAM BEAM
CROD BEAM
CTUBE BEAM
ISOPARAMETRIC SHELL SHELL
4.2 ELEMENT PROPERTY:
General Comments: Delete PGAP properties. Convert spring stiffness into DYNA material.
NASTRAN ===> DYNA (V970)
PSHELL SECTION_SHELL
PSOLID SECTION_SOLID
PBAR SECTION_BEAM (resultant)
PBEAM SECTION_BEAM (resultant)
PELAS SECTION_DISCRETE
PROD SECTION_BEAM (truss)
PTUBE SECTION_BEAM (integrated)
4.3 MATERIAL PROPERTY:
NASTRAN ===> DYNA (V970)
MAT1 1 -MAT_ELASTIC
4.4 BOUNDARY AND LOAD CONDITION:
NASTRAN ===> DYNA(V970)
SPC BOUNDARY_SPC_SET
NODE FORCE LOAD_NODE_SET
SHELL PRESSURE LOAD_SHELL_SET
INITIAL VELOCITY INITIAL_VELOCITY
4.5 OTHERS:
General Comments: Convert NODE SET, ELEMENT SET.
NASTRAN ===> DYNA (V970)
LOAD CURVE DEFINE_CURVE
LOCAL COORDINATE DEFINE_COORDINATE_SYSTEM
5.1 ELEMENT:
General Comments: Delete SEATBELT & JOINT elements.
DYNA (V970) ===> NASTRAN
BEAM CBAR, CBEAM, CROD,CTUBE (according to element Prop.)
CONSTRAINED_NODAL_RIGID_BODY RBE2
T-SHELL SOLID
SHELL SHELL
SOLID SOLID
DISCRETE CELAS1 (Create LCS for spring direction)
MASS CONM2
CONSTRAINED_SPOTWELD RBAR
INERTIA CONM2
CONSTRAINED_NODE_SET RBE2
5.2 ELEMENT PROPERTY:
General Comments: Delete SEATBELT section. Convert spring stiffness into element property.
DYNA (V970) ===> NASTRAN
SECTION_BEAM (integrated) PBAR, PTUBE (According to ELFORM and CST)
SECTION_BEAM (resultant) PBAR
SECTION_BEAM (discrete) PBAR
SECTION_BEAM (truss) PROD
SECTION_BEAM (spotweld) PBAR
SECTION_DISCRETE PELAS
SECTION_SHELL PSHELL
SECTION_SOLID PSOLID
SECTION_SOLID_ALE PSOLID
SECTION_TSHELL PSOLID
5.3 MATERIAL PROPERTY:
All materials MAT1.
5.4 BOUNDARY AND LOAD CONDITION:
DYNA (V970) ===> NASTRAN
BOUNDARY_SPC_NODE SPC
BOUNDARY_SPC_SET SPC
INITIAL_VELOCITY INITIAL VELOCITY
INITIAL_VELOCITY_NODE INITIAL VELOCITY
INITIAL_VELOCITY_GENERATION INITIAL VELOCITY
LOAD_NODE_POINT NODAL FORCE
LOAD_NODE_SET NODAL FORCE
LOAD_SHELL_ELEMENT SHELL PRESSURE
LOAD_SHELL_SET SHELL PRESSURE
5.5 OTHERS:
General Comments: Convert NODE SET, ELEMENT SET. Delete all other cards that can't be converted.
DYNA (V970) ===> NASTRAN
DEFINE_COORDINATE_NODES LOCAL COORDINATE
DEFINE_COORDINATE_SYSTEM LOCAL COORDINATE
DEFINE_COORDINATE_VECTOR LOCAL COORDINATE
DEFINE_CURVE LOAD CURVE
6.1 ELEMENT:
RADIOSS (V4.1) ===> NASTRAN
BEAM CBAR
TRUSS CROD
SOLID SOLID
SHELL SHELL
SPRING ELAS1(3rd node is converted to a LCS in NASTRAN)
MASS CONM2
JOINT RBE2
RIGID BODY RBE2
SPOTWELD RBAR
6.2 ELEMENT PROPERTY:
General Comments: Delete VOID, RIVET properties.
RADIOSS (V4.1) ===> NASTRAN
1 -SHELL PSHELL
2 -TRUSS PROD
3 -BEAM PBAR
4 -SPRING PELAS
6 -ORTHOTROPIC SOLID PSOLID
8 -GENERAL SPRING PELAS
9 -ORTHOTROPIC SHELL PSHELL
10-COMP. SHELL PSHELL
11-COMP. SHELL PSHELL
12-3-NODES SPRING PELAS
13-BEAM TYPE SPRING PELAS
14-GENERAL SOLID PSOLID
6.3 MATERIAL PROPERTY:
All materials MAT1
6.4 BOUNDARY AND LOAD CONDITION:
General Comments: Delete PRESSURE LOAD.
RADIOSS (V4.1) ===> NASTRAN
SPC SPC
CONCENTRATED LOAD NODE FORCE
INITIAL VELOCITY INITIAL VELOCITY
6.5 OTHERS:
General Comments: Delete NODE SET, SHELL SET, BEAM SET, SOLID SET, SPRING SET, TRUSS SET. Delete all others cards that can't be converted.
RADIOSS (V4.1) ===> NASTRAN
FUNCTION LOAD CURVE
SKEW (moving) LOCAL COORDINATE
SKEW (fixed) LOCAL COORDINATE
7.1 ELEMENT:
General Comments: Delete RBE3 & CGAP elements.
NASTRAN ===> RADIOSS (V4.1)
CBAR BEAM
RBE2 RIGID BODY
SHELL SHELL
SOLID SOLID
CELAS2 SPRING(3rd node is created if necessary to define the direction)
CELAS1 SPRING(3rd node is created if necessary to define the direction)
RBAR SPOTWELD
CONM2 MASS
CBEAM BEAM
CROD TRUSS
CTUBE BEAM
ISOPARAMETRIC SHELL SHELL
7.2 ELEMENT PROPERTY:
General Comments: Delete PGAP properties.
NASTRAN ===> RADIOSS (V4.1)
PSHELL 1 -SHELL
PSOLID 14-GENERAL_SOLID
PBAR 3 -BEAM
PBEAM 3 -BEAM
PELAS 4 -SPRING
PROD 2 -TRUSS
PTUBE 3 -BEAM
7.3 MATERIAL PROPERTY:
NASTRAN ===> RADIOSS (V4.1)
MAT1 1 -ELASTIC
7.4 BOUNDARY AND LOAD CONDITION:
NASTRAN ===> RADIOSS (V4.1)
SPC SPC
NODE FORCE CONCENTRATED LOAD
SHELL PRESSURE PRESSURE LOAD
INITIAL VELOCITY INITIAL_VELOCITY
7.5 OTHERS:
General Comments: Delete NODE SET, ELEMENT SET.
NASTRAN ===> RADIOSS (V4.1)
LOAD CURVE FUNCTION
LOCAL COORDINATE SYSTEM SKEW_MOV
RADIOSS 4.4 Conversion to LS-DYNA & NASTRAN
8.1 ELEMENT:
RADIOSS(V4.4) ===> DYNA(V970)
BEAM BEAM
JOINT If RADIOSS’s JOINT has 4 nodes, DSI
will convert it into two
*CONSTRAINED_NODAL_RIGID_BODY
and one *CONSTRAINED_JOINT_CYLINDRICAL.
Otherwise, DSI will convert it into
*CONSTRAINED_NODAL_RIGID_BODY.
MASS MASS
QUAD SHELL
RBODY If RADIOSS RIGID BODY does not have
mass and inertia, DSI will convert it
into *CONSTRAINED_NODAL_RIGID_BODY.
Otherwise, DSI will convert it into
*CONSTRAINED_NODAL_RIGID_BODY_INERTIA.
RADIOSS’s primary node(RBID) will be
used as DYNA’s “NODEID” in second card of
*CONSTRAINED_NODAL_RIGID_BODY_INERTIA.
RIVET *CONSTRAINED_SPOTWELD
If user need MAT100 spotweld instead
Of *CONSTRAINED_SPOTWELD, user can use
function “SPOTWELD TO MAT100 SP.”
under “ELEMENT OPTION/MODIFY/TYPE” to
convert it.
RLINK *CONSTRAINED_NODAL_RIGID_BODY
SHELL SHELL
SHEL16 SOLID
SOLID SOLID
SPRING If this spring has element property
type 4, 8, 12, 13, DSI will convert it
into BEAM. Otherwise, DSI convert it
into spring.
TRUSS BEAM
XELEM *CONSTRAINED_NODAL_RIGID_BODY
8.2 ELEMENT PROPERTY:
Delete VOID, RIVET, KJOINT, NSTRAND property.
Convert spring stiffness into DYNA material.
RADIOSS (V4.4) ===> DYNA (V970)
1 -SHELL SECTION_SHELL
2 -TRUSS SECTION_BEAM(truss)
3 -BEAM SECTION_BEAM(resultant)
4 -SPRING SECTION_BEAM(discrete)
6 –SOL_ORTH SECTION_SOLID
8 –SPR_GENE SECTION_BEAM(discrete)
9 –SH_ORTH SECTION_SHELL
10-SH_COMP SECTION_SHELL
11-SH_SANDW SECTION_SHELL
12-SPR_PUL SECTION_BEAM(discrete)
13-SPR_BEAM SECTION_BEAM(discrete)
14-SOLID SECTION_SOLID
32-SPR_PRE SECTION_DISCRETE
35-STITCH SECTION_DISCRETE
36-PREDIT SECTION_BEAM(resultant)
CONVERT RADIOSS’s SPRING PROPERTY(TYPE 4,8,12,13) INTO DYNA's
MATERIAL 196.
IF H=0, N1=0: LINEAR ELASTIC SPRING
K(DYNA) = K(RADIOSS)
D(DYNA) = C(RADIOSS)
IF H=0, N1>0: NONLINEAR ELASTIC SPRING
K(DYNA) = A(RADIOSS) (IF A(RADIOSS)=0.0, THEN
K(DYNA)=1.0)
C2(DYNA) = B(RADIOSS)/A(RADIOSS)
FLCID=GLCID = N1(RADIOSS)
HLCID = N2(RADIOSS)
DLE(DYNA) = D(RADIOSS)
IF H=1, N1>0:
K(DYNA) = K(RADIOSS)
A(RADIOSS) = 1.0 IS ASSUMED
C2(DYNA) = B(RADIOSS)
FLCID=GLCID = N1(RADIOSS)
HLCID = N2(RADIOSS)
DLE(DYNA) = D(RADIOSS)
CONVERT RADIOSS SPRING INTO DYNA BEAM.
IN ALL CASES, IF LENGTH OF SPRING IS FINITE, SET “SCOOR” OF
*SECTION_BEAM TO 2. IF LENGTH IS VERY SMALL(<=0.000001) OR ZERO,
SET “SCOOR” TO 0. IF RADIOSS DOES NOT HAVE INER VALUE, DSI SET
It AS 1.0.
8.3 MATERIAL PROPERTY:
RADIOSS(V4.4) ===> DYNA(V970)
0 -VOID 9 -MAT_NULL
1 –ELAST 1 -MAT_ELASTIC
2 -PLAS_JOHNS or PLAS_ZERIL 98 -MAT_SIMPLIFIED_JOHNSON_COOK
3 –HYDPLA 10 -MAT_ELASTIC_PLASTIC_HYDRO
4 -HYD_JCOOK 15 -MAT_JOHNSON_COOK
6 -HYD_VISC 9 -MAT_NULL
10-LAW10 63 -MAT_CRUSHABLE_FOAM
14-COMPSO 2 -MAT_ORTHOTROPIC_ELASTIC
15-CHANG 2 -MAT_ORTHOTROPIC_ELASTIC
19-FABRI 130-MAT_SPECIAL_ORTHOTROPIC
21-DPRAG 57 -MAT_LOW_DENSITY_FOAM
NOTE:
There is no direct conversion of RADIOSS’s material type 21 to
DYNA’s *MAT_LOW_DENSITY_FOAM.
DSI uses the following example as DYNA’s material type 57 for seat foam.
$ UNITS: kg, mm, ms, GPa
*MAT_LOW_DENSITY_FOAM
$ seat foam
571258.8200E-08 0.0045 2222 0.4 0.0 0.0 .05
0.0 0.0 0.0 0.0 0.0 0.0
*DEFINE_CURVE
2222 0 1.0 0.01 0.0 0.0 0
0.0 0.0
0.0625 0.119800001
0.122500002 0.383390009
0.177499995 0.377400011
0.234999999 0.413399994
0.280699998 0.444999993
0.344999999 0.466100007
0.397000015 0.497999996
0.444900006 0.53670001
0.49000001 0.561600029
0.528999984 0.601000011
0.564999998 0.653999984
0.597000003 0.721000016
0.622500002 0.818000019
0.644900024 0.897000015
0.660000026 0.949999988
0.666999996 0.989000022
0.670000017 0.99000001
0.671999991 1.0
0.699000001 1.20000005
0.75 1.51999998
0.800000012 2.19000006
0.808000028 2.30299997
22-DAMA 81 -MAT_PLASTICITY_WITH_DAMAGE
23-LAW23 81 -MAT_PLASTICITY_WITH_DAMAGE
24-CONC 16 -MAT_PSEUDO_TENSOR
25-COMPSH 2 -MAT_ORTHOTROPIC_ELASTIC
27-PLAS_BRIT 81 -MAT_PLASTICITY_WITH_DAMAGE
28-HONEYCOMB 26 -MAT_HONEYCOMB
NOTE:
DSI set DYNA's value PR=0.0, SIGY=1.0, VF=0.2, MU=0.2, and ELFORM=1
in relative *SECTION_SOLID card. DSI create a *HOURGLASS card with
IHQ=4, and put it into relative *PART's HGID field.
In RADIOSS, if the relative element property ID is 0 or the element
property type is not TYPE 6, DSI will set the material directions
1,2,3 align with the global axes X,Y,Z, AOPT=2, (A1,A2,A3)=(1,0,0),
(D1,D2,D3)=(0,1,0). Otherwise DSI will set AOPT=0, and map the
RADIOSS 1,2,3 axes to the LS-DYNA b,c,a axes. The RADIOSS yield
functions for the honeycomb material which have mu as the abscissa
values must be converted into LS-DYNA curves with mu/(1+mu) as the
abscissa values. In the above discussion, it is assumed that the
angle PHI in the RADIOSS orthotropic solid property set data is set
to zero. If PHI is nonzero, further thought must be given to the
conversion.
32-HILL 3 -MAT_PLASTIC_KINEMATIC
33-FOAM_PLAS 53 -MAT_CLOSED_CELL_FOAM
34-BOLTZMAN 61 -MAT_KELVIN-MAXWELL_VISCOELASTIC
35-FOAM_VISC 76 -MAT_GENERAL_VISCOELASTIC
36-PLAS_TAB 24 -MAT_PIECEWISE_LINEAR_PLASTICITY
38-VISC_TAB 76 -MAT_GENERAL_VISCOELASTIC
40-KELVINMAX 76 -MAT_GENERAL_VISCOELASTIC
42-OGDEN 77 -MAT_OGDEN_RUBBER
43-HILL_TAB 24 -MAT_PIECEWISE_LINEAR_PLASTICITY
44-COWPER 98 -MAT_SIMPLIFIED_JOHNSON_COOK
48-ZHAO 98 -MAT_SIMPLIFIED_JOHNSON_COOK
49–STEINB 10 -MAT_ELASTIC_PLASTIC_HYDRO
50-LAW50 26 -MAT_HONEYCOMB
52-GURSON 98 -MAT_SIMPLIFIED_JOHNSON_COOK
53-LAW53 26 -MAT_HONEYCOMB
54–LAW54 1 -MAT_ELASTIC
8.4 BOUNDARY AND LOAD CONDITION:
RADIOSS (V4.4) ===> DYNA (V970)
BCS BOUNDARY_SPC_SET
CLOAD LOAD_NODE_SET
GRAVITY LOAD_BODY
INITIAL VELOCITY INITIAL_VELOCITY
IMPOSED DISPLACEMENT BOUNDARY_PRESCRIBED_MOTION_SET
IMPOSED VELOCITY BOUNDARY_PRESCRIBED_MOTION_SET
IMPOSED ACCELERATION BOUNDARY_PRESCRIBED_MOTION_SET
MPC CONSTRAINED_LINEAR_LOCAL
PLOAD LOAD_SEGMENT_SET
8.5 CONTACT AND RIGIDWALL:
Delete RIGIDWALLs which do not have nodes.
RADIOSS(V4.4) ===> DYNA(V970)
TYPE2 -TIED CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE3 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE5 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE6 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE7 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE8 -SLIDE CONTACT_DRAWBEAD
TYPE10-TIED/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE11-SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE14-SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
TYPE15-SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
LAGMUL TYPE2 -TIED CONTACT_AUTOMATIC_SINGLE_SURFACE
LAGMUL TYPE7 -SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
LAGMUL TYPE16-SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
LAGMUL TYPE17-SLIDE/VOID CONTACT_AUTOMATIC_SINGLE_SURFACE
NOTE:
Or create a new *CONTACT_AUTOMATIC_SINGLE_SURFACE to replace all RADIOSS’s contact.
Set all *CONTACT_AUTOMATIC_SINGLE_SURFACE's SOFT=1, IGAP=2, IGNORE=1.
If RADIOSS data does not have FS, DSI will set it as 0.2. Moreover,
set FD as 0.2.
RIGIDWALL RIGIDWALL_GEOMETRIC
8.6. AIRBAG(MONITORED VOLUMES):
MONITORED VOLUMES AIRBAG_SIMPLE_AIRBAG_MODEL
If this MONITORED VOLUMES is a tire model, we suggest use
AIRBAG_SIMPLE_PRESSURE_VOLUME instead of AIRBAG_SIMPLE_AIRBAG_MODEL.
REPLACE THE ORIGINAL MATERIAL WITH *MAT_FABRIC.
8.7 SEATBELT:
CONVERT RADIOSS'S MATERIAL TYPE 1 WHICH HAS VERY SMALL YOUNG'S MODULUS INTO DYNA'S *MAT_FABRIC.
8.8 OTHERS:
Delete all other cards that can't be converted to DYNA.
RADIOSS (V4.4) ===> DYNA (V970)
FUNCTION DEFINE_CURVE
FRAME DEFINE_COORDINATE
NOTE:
If you don’t have RADIOSS ENGINE file, DSI will set up DYNA *CONTROL
cards for you as follows.
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_HOURGLASS
$ ihq qh
4 .1
*CONTROL_ACCURACY
$ osu inn pidosu
0 2 0
*CONTROL_BULK_VISCOSITY
$ q2 q1 type
1.500 0.06000 1
*CONTROL_CONTACT
$ slsfac rwpnal islchk shlthk penopt thkchg orien enmass
0.10000 1.000 2 0 1 1 2 0
$ usrstr usrfrc nsbcs interm xpene ssthk ecdt tiedprj
0 0 10 0 4.000 0 0 0
$ sfric dfric edc vfc th th_sf pen_sf
0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ ignore frceng
1 0
*CONTROL_ENERGY
$ hgen rwen slnten rylen
2 2 2 2
*CONTROL_OUTPUT
$ npopt neecho nrefup iaccop opifs ipnint ikedit iflush
0 0 0 0 0.0 0 200 5000
$ iprtf
0
*CONTROL_SHELL
$ wrpang itrist irnxx istupd theory bwc miter proj
20.000 1 -1 0 2 2 1 0
$ rotascl intgrd lamsht
0.0 0 0
*CONTROL_TERMINATION
$ endtim endcyc dtmin endeng endmas
0.000 0 0.0 0.0 0.0
*CONTROL_TIMESTEP
$ dtinit tssfac isdo tslimt dt2ms lctm erode ms1st
0.0 0.90000 0 0.0 -1.100E-3 0 0 0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
I. If you don’t have RADIOSS ENGINE file, DSI will set up DYNA *DATABASE
cards for you as following.
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_ABSTAT
$ dt
0.5
*DATABASE_GLSTAT
$ dt
0.5
*DATABASE_MATSUM
$ dt
1.000
*DATABASE_NODOUT
$ dt
0.5
*DATABASE_RCFORC
$ dt
0.5
*DATABASE_RWFORC
$ dt
0.5
*DATABASE_SECFORC
$ dt
0.5
*DATABASE_ELOUT
$ dt
0.5
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_BINARY_D3PLOT
$ dt/cycl lcdt beam npltc
5.000 0 0 0
*DATABASE_BINARY_D3DUMP
$ dt/cycl
100000.
*DATABASE_BINARY_RUNRSF
$ dt/cycl
1000.
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
9.1 ELEMENT:
Delete PLOTEL, *CONSTRAINED_INTERPOLATION element.
DYNA (V970) ===> RADIOSS (V4.4)
BEAM BEAM
DISCRETE SPRING
Convert DYNA’s VID into RADIOSS’s third node.
INERTIA MASS
MASS MASS
SHELL SHELL
SOLID SOLID
T-SHELL SOLID
CONSTRAINED_NODAL_RIGID_BODY RBODY
CONSTRAINED_NODE_SET RBODY
CONSTRAINED_SPOTWELD RIVET
JOINT JOINT
SEATBELT BEAM
9.2 ELEMENT PROPERTY:
Delete SPH, POINT_SOURCE, POINT_SOURCE_MIXTURE section.
Convert DYNA’s spring stiffness into RADIOSS’s element property.
DYNA (V970) ===> RADIOSS (V4.4)
SECTION_BEAM (integrated) 3 -BEAM
SECTION_BEAM (resultant) 3 -BEAM
SECTION_BEAM (discrete) 3 -BEAM
SECTION_BEAM (truss) 3 -BEAM
SECTION_BEAM (spotweld) 3 –BEAM
SECTION_BEAM (2D shells) 3 -BEAM
SECTION_DISCRETE 4 -SPRING
SECTION_SHELL 1 -SHELL
SECTION_SHELL_ALE 1 -SHELL
SECTION_SOLID 14-SOLID
SECTION_SOLID_ALE 14-SOLID
SECTION_TSHELL 14-SOLID
SECTION_SEATBELT 3 -BEAM
9.3 MATERIAL PROPERTY:
DYNA (V970) ===> RADIOSS (V4.4)
1 -MAT_ELASTIC 1 -ELAST
1 -MAT_ELASTIC_FLUID 1 -ELAST
2 -MAT_ORTHOTROPIC_ELASTIC 14-COMPSO
2 -MAT_ANISOTROPIC_ELASTIC 1 -ELAST
3 -MAT_PLASTIC_KINEMATIC 2 -PLAS_JOHNS
4 -MAT_ELASTIC_PLASTIC_THERMAL 2 -PLAS_JOHNS
5 -MAT_SOIL_AND_FOAM 33-FOAM_PLAS
6 -MAT_VISCOELASTIC 34-BOLTZMAN
7 -MAT_BLATZ-KO_RUBBER 1 -ELAST
8 -MAT_HIGH_EXPLOSIVE_BURN 1 -ELAST
9 -MAT_NULL 6 -HYD_VISC
10 -MAT_ELASTIC_PLASTIC_HYDRO 3 -HYDPLA
10 -MAT_ELASTIC_PLASTIC_HYDRO_SPALL 3 -HYDPLA
11 -MAT_STEINBERG 1 -ELAST
11 -MAT_STEINBERG_LUND 1 -ELAST
12 -MAT_ISOTROPIC_ELASTIC_PLASTIC 2 -PLAS_JOHNS
13 -MAT_ISOTROPIC_ELASTIC_FAILURE 2 -PLAS_JOHNS
14 -MAT_SOIL_AND_FOAM_FAILURE 33-FOAM_PLAS
15 -MAT_JOHNSON_COOK 4 -HYD_JCOOK
16 -MAT_PSEUDO_TENSOR 24-CONC
17 -MAT_ORIENTED_CRACK 2 -PLAS_JOHNS
18 -MAT_POWER_LAW_PLASTICITY 2 -PLAS_JOHNS
19 -MAT_STRAIN_RATE_DEPENDENT_PLASTICITY 2 -PLAS_JOHNS
20 -MAT_RIGID 1 -ELAST
21 -MAT_ORTHOTROPIC_THERMAL 14-COMPSO
22 -MAT_COMPOSITE_DAMAGE 14-COMPSO
23 -MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC
14-COMPSO
24 -MAT_PIECEWISE_LINEAR_PLASTICITY 36-PLAS_TAB
25 -MAT_GEOLOGICAL_CAP_MODEL 24-CONC
26 -MAT_HONEYCOMB 2 -PLAS_JOHNS
27 -MAT_MOONEY-RIVLIN_RUBBER 1 -ELAST
28 -MAT_RESULTANT_PLASTICITY 2 -PLAS_JOHNS
29 -MAT_FORCE_LIMITED 2 -PLAS_JOHNS
30 -MAT_CLOSED_FORM_SHELL_PLASTICITY 2 -PLAS_JOHNS
31 -MAT_FRAZER_NASH_RUBBER_MODEL 1 -ELAST
32 -MAT_LAMINATED_GLASS 2 -PLAS_JOHNS
33 -MAT_BARLAT_ANISOTROPIC_PLASTICITY 2 -PLAS_JOHNS
33 -MAT_BARLAT_YLD96 2 -PLAS_JOHNS
34 -MAT_FABRIC 14-COMPSO
35 -MAT_PLASTIC_GREEN-NAGHDI_RATE 2 -PLAS_JOHNS
36 -MAT_3-PARAMETER_BARLAT 2 -PLAS_JOHNS
37 -MAT_TRANSVERSELY_ANISOTROPIC_ELASTIC_PLASTIC
2 -PLAS_JOHNS
38 -MAT_BLATZ-KO_FOAM 33-FOAM_PLAS
39 -MAT_FLD_TRANSVERSELY_ANISOTROPIC 2 -PLAS_JOHNS
40 -MAT_NONLINEAR_ORTHOTROPIC 14-COMPSO
41 -MAT_USER_DEFINED_MATERIAL_MODELS 1 -ELAST
51 -MAT_BAMMAN 2 -PLAS_JOHNS
52 -MAT_BAMMAN_DAMAGE 2 -PLAS_JOHNS
53 -MAT_CLOSED_CELL_FOAM 33-FOAM_PLAS
54 -MAT_ENHANCED_COMPOSITE_DAMAGE 14-COMPSO
57 -MAT_LOW_DENSITY_FOAM 33-FOAM_PLAS
58 -MAT_LAMINATED_COMPOSITE_FABRIC 14-COMPSO
59 -MAT_COMPOSITE_FAILURE_SHELL_MODEL 14-COMPSO
59 -MAT_COMPOSITE_FAILURE_SOLID_MODEL 14-COMPSO
60 -MAT_ELASTIC_WITH_VISCOSITY 1 -ELAST
61 -MAT_KELVIN-MAXWELL_VISCOELASTIC 34-BOLTZMAN
62 -MAT_VISCOUS_FOAM 33-FOAM_PLAS
63 -MAT_CRUSHABLE_FOAM 10-LAW10
64 -MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY
2 -PLAS_JOHNS
65 -MAT_MODIFIED_ZERILLI_ARMSTRONG 2 -PLAS_JOHNS
66 -MAT_LINEAR_ELASTIC_DISCRETE_BEAM 1 –ELAST
67 -MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM 1 –ELAST
68 -MAT_NONLINEAR_PLASTIC_DISCRETE_BEAM 2 -PLAS_JOHNS
69 -MAT_SID_DAMPER_DISCRETE_BEAM 1 –ELAST
70 -MAT_HYDRAULIC_GAS_DAMPER_DISCRETE_BEAM
1 –ELAST
71 -MAT_CABLE_DISCRETE_BEAM 1 -ELAST
72 -MAT_CONCRETE_DAMAGE 24-CONC
73 -MAT_LOW_DENSITY_VISCOUS_FOAM 33-FOAM_PLAS
74 -MAT_ELASTIC_SPRING_DISCRETE_BEAM 1 -ELAST
75 -MAT_BILKHU/DUBOIS_FOAM 33-FOAM_PLAS
76 -MAT_GENERAL_VISCOELASTIC 35-FOAM_VISC
77 -MAT_HYPERELASTIC_RUBBER 42-OGDEN
77 -MAT_OGDEN_RUBBER 42-OGDEN
78 -MAT_SOIL_CONCRETE 10-LAW10
79 -MAT_HYSTERETIC_SOIL 24-CONC
80 -MAT_RAMBERG_OSGOOD 1 -ELAST
81 -MAT_PLASTICITY_WITH_DAMAGE 22-DAMA
83 -MAT_FU_CHANG_FOAM 33-FOAM_PLAS
86 -MAT_ORTHOTROPIC_VISCOELASTIC 14-COMPSO
87 -MAT_CELLULAR_RUBBER 1 -ELAST
88 -MAT_MTS 1 -ELAST
89 -MAT_PLASTICITY_POLYMER 2 -PLAS_JOHNS
90 -MAT_ACOUSTIC 1 -ELAST
94 -MAT_INELASTIC_SPRING_DISCRETE_BEAM 1 -ELAST
96 -MAT_BRITTLE_DAMAGE 24-CONC
98 -MAT_SIMPLIFIED_JOHNSON_COOK 2 -PLAS_JOHNS
100-MAT_SPOTWELD 1 -ELAST
103-MAT_ANISOTROPIC_VISCOPLASTIC 33-FOAM_PLAS
104-MAT_DAMAGE_1 22-DAMA
105-MAT_DAMAGE_2 22-DAMA
116-MAT_COMPOSITE_LAYUP 14-COMPSO
117-MAT_COMPOSITE_MATRIX 1 -ELAST
118-MAT_COMPOSITE_DIRECT 1 –ELAST
123-MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY
36-PLAS_TAB
124-MAT_PLASTICITY_COMPRESSION_TENSION 2 -PLAS_JOHNS
126-MAT_MODIFIED_HONEYCOMB 2 -PLAS_JOHNS
127-MAT_ARRUDA_BOYCE_RUBBER 42-OGDEN
128-MAT_HEART_TISSUE 1 -ELAST
129-MAT_LUNG_TISSUE 1 -ELAST
130-MAT_SPECIAL_ORTHOTROPIC 19-FABRI
OTHER MATERIAL TYPE 1 -ELAST
9.4 BOUNDARY AND LOAD CONDITION:
DYNA (V970) ===> RADIOSS (V4.4)
BOUNDARY_PRESCRIBED_MOTION(displacement)
IMPOSED DISPLACEMENT
BOUNDARY_PRESCRIBED_MOTION(velocity)
IMPOSED VELOCITY
BOUNDARY_PRESCRIBED_MOTION(acceleration)
IMPOSED ACCELERATION
BOUNDARY_SPC BCS
CONSTRAINED_LINEAR MPC
INITIAL_VELOCITY INITIAL VELOCITY
LOAD_NODE CLOAD
(Deleted when DOF is 4 or 8.)
LOAD_SEGMENT PLOAD
LOAD_SHELL PLOAD
9.5 CONTACT AND RIGIDWALL:
DSI deletes CONTACT_ENTITY, CONTACT_INTERIOR, CONTACT_1D,
CONTACT_2D_OPTIONS, CONTACT_GEBOD_OPTION,
CONTACT_RIGID_SURFACE, CONTACT_AUTO_MOVE,
CONTACT_COUPLING.
DYNA (V970) ===> RADIOSS (V4.4)
CONTACT_AIRBAG_SINGLE_SURFACE TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_GENERAL TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_GENERAL_INTERIOR TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE
TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK
TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_SINGLE_SURFACE TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK
TYPE7 -SLIDE/VOID
CONTACT_CONSTRAINT_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_CONSTRAINT_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_DRAWBEAD TYPE8 –SLIDE
CONTACT_DRAWBEAD_INITIALIZE TYPE8 –SLIDE
CONTACT_ERODING_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_ERODING_SINGLE_SURFACE TYPE7 -SLIDE/VOID
CONTACT_ERODING_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_FORCE_TRANSDUCER_PENALTY TYPE7 -SLIDE/VOID
CONTACT_FORCE_TRANSDUCER_CONSTRAINT TYPE7 -SLIDE/VOID
CONTACT_FORMING_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
TYPE7 -SLIDE/VOID
CONTACT_FORMING_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_NODES_TO_SURFACE_INTERFERENCE
TYPE7 -SLIDE/VOID
CONTACT_ONE_WAY_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_ONE_WAY_SURFACE_TO_SURFACE_INTERFERENCE
TYPE7 -SLIDE/VOID
CONTACT_RIGID_NODES_TO_RIGID_BODY TYPE7 -SLIDE/VOID
CONTACT_RIGID_BODY_ONE_WAY_TO_RIGID_BODY TYPE7 -SLIDE/VOID
CONTACT_RIGID_BODY_TWO_WAY_TO_RIGID_BODY TYPE7 -SLIDE/VOID
CONTACT_SINGLE_EDGE TYPE7 -SLIDE/VOID
CONTACT_SINGLE_SURFACE TYPE7 -SLIDE/VOID
CONTACT_SLIDING_ONLY TYPE7 -SLIDE/VOID
CONTACT_SLIDING_ONLY_PENALTY TYPE7 -SLIDE/VOID
CONTACT_SPOTWELD TYPE7 -SLIDE/VOID
CONTACT_SPOTWELD_WITH_TORSION TYPE7 -SLIDE/VOID
CONTACT_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_SURFACE_TO_SURFACE_THERMAL TYPE7 -SLIDE/VOID
CONTACT_SURFACE_TO_SURFACE_INTERFERENCE TYPE7 -SLIDE/VOID
CONTACT_TIEBREAK_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_TIEBREAK_NODES_ONLY TYPE7 -SLIDE/VOID
CONTACT_TIEBREAK_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_TIED_NODES_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_TIED_NODES_TO_SURFACE_OFFSET TYPE7 -SLIDE/VOID
CONTACT_TIED_NODES_TO_SURFACE_CONSTRAINED_OFFSET
TYPE7 -SLIDE/VOID
CONTACT_TIED_SHELL_EDGE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_TIED_SHELL_EDGE_TO_SURFACE_OFFSET TYPE7 -SLIDE/VOID
CONTACT_TIED_SHELL_EDGE_TO_SURFACE_BEAM_OFFSET
TYPE7 -SLIDE/VOID
CONTACT_TIED_SHELL_EDGE_TO_SURFACE_CONSTRAINED_OFFSET
TYPE7 -SLIDE/VOID
CONTACT_TIED_SURFACE_TO_SURFACE TYPE7 -SLIDE/VOID
CONTACT_TIED_SURFACE_TO_SURFACE_OFFSET
TYPE7 -SLIDE/VOID
CONTACT_TIED_SURFACE_TO_SURFACE_CONSTRAINED_OFFSET
TYPE7 -SLIDE/VOID
CONTACT_TIED_SURFACE_TO_SURFACE_FAILURE TYPE7 -SLIDE/VOID
RIGIDWALL RWALL
9.6 OTHERS:
Delete all other cards that can't be converted to RADIOSS.
DYNA (V970) ===> RADIOSS (V4.4)
DEFINE_COORDINATE FRAME
DEFINE_CURVE FUNCTION
10.1 ELEMENT:
When some RBE2 share the common node, merge them into one RBE2.
Delete CGAP elements.
NASTRAN ===> DYNA (V970)
CBAR BEAM
RBE2 If NASTRAN’s DOF is 123456, convert it
into DYNA’s
*CONSTRAINED_NODAL_RIGID_BODY.
Otherwise, convert it into DYNA’s
*CONSTRAINED_NODE_SET.
SHELL SHELL
SOLID SOLID
CELAS2 DISCRETE
Create a *DEFINE_SD_ORIENTATION for
spring direction.
CELAS1 DISCRETE
Create a *DEFINE_SD_ORIENTATION for
spring direction.
RBAR CONSTRAINED_SPOTWELD
CONM2 MASS & INERTIA
CBEAM BEAM
CROD BEAM
CTUBE BEAM
ISOPARAMETRIC SHELL SHELL
RBE3 CONST. INTERPOLATION
10.2 ELEMENT PROPERTY:
DSI deletes PGAP property. DSI converts spring stiffness into DYNA material.
NASTRAN ===> DYNA (V970)
PSHELL SECTION_SHELL
PSOLID SECTION_SOLID
PBAR SECTION_BEAM (resultant)
PBEAM SECTION_BEAM (resultant)
PELAS SECTION_DISCRETE
PROD SECTION_BEAM (truss)
PTUBE SECTION_BEAM (integrated)
10.3 MATERIAL PROPERTY:
NASTRAN ===> DYNA (V970)
MAT1 1 -MAT_ELASTIC
10.4 BOUNDARY AND LOAD CONDITION:
NASTRAN ===> DYNA(V970)
SPC BOUNDARY_SPC_SET
NODE FORCE LOAD_NODE_SET
SHELL PRESSURE LOAD_SHELL_SET
INITIAL VELOCITY INITIAL_VELOCITY
10.5 OTHERS:
DSI converts NODE SET, ELEMENT SET.
NASTRAN ===> DYNA (V970)
LOAD CURVE DEFINE_CURVE
LOCAL COORDINATE DEFINE_COORDINATE_SYSTEM
11.1 ELEMENT:
Delete SEATBELT & JOINT elements.
DYNA (V970) ===> NASTRAN
BEAM CBAR, CBEAM, CROD
According to it's element property.
CONSTRAINED_NODAL_RIGID_BODY RBE2
T-SHELL SOLID
SHELL SHELL
SOLID SOLID
DISCRETE CELAS1
Create a LCS for spring direction.
MASS CONM2
CONSTRAINED_SPOTWELD RBAR
INERTIA CONM2
CONSTRAINED_NODE_SET RBE2
11.2 ELEMENT PROPERTY:
DSI seletes SEATBELT section and converts spring stiffness into element property.
DYNA (V970) ===> NASTRAN
SECTION_BEAM(integrated) PBAR
According to it's ELFORM and CST.
SECTION_BEAM (resultant) PBAR
SECTION_BEAM (discrete) PBAR
SECTION_BEAM (truss) PROD
SECTION_BEAM (spotweld) PBAR
SECTION_DISCRETE PELAS
SECTION_SHELL PSHELL
SECTION_SOLID PSOLID
SECTION_SOLID_ALE PSOLID
SECTION_TSHELL PSOLID
11.3 MATERIAL PROPERTY:
All material MAT1.
11.4 BOUNDARY AND LOAD CONDITION:
DYNA (V970) ===> NASTRAN
BOUNDARY_SPC_NODE SPC
BOUNDARY_SPC_SET SPC
INITIAL_VELOCITY INITIAL V ELOCITY
INITIAL_VELOCITY_NODE INITIAL VELOCITY
INITIAL_VELOCITY_GENERATION INITIAL VELOCITY
LOAD_NODE_POINT NODAL FORCE
LOAD_NODE_SET NODAL FORCE
LOAD_SHELL_ELEMENT SHELL PRESSURE
LOAD_SHELL_SET SHELL PRESSURE
11.5 OTHERS:
Convert NODE SET, ELEMENT SET. Delete all other cards that can't be converted.
DYNA (V970) ===> NASTRAN
DEFINE_COORDINATE_NODES LOCAL COORDINATE
DEFINE_COORDINATE_SYSTEM LOCAL COORDINATE
DEFINE_COORDINATE_VECTOR LOCAL COORDINATE
DEFINE_CURVE LOAD CURVE
12.1 ELEMENT:
RADIOSS (V4.4) ===> NASTRAN
BEAM CBAR
JOINT RBE2
MASS CONM2
QUAD SHELL
RBODY RBE2
RIVET RBAR
RLINK RBE2
SHELL SHELL
SHEL16 SOLID
SOLID SOLID
SPRING CELAS1
(The third node is converted into an LCS.)
TRUSS CROD
XELEM RBE2
12.2 ELEMENT PROPERTY:
Delete TYPE0(VOID), TYPE5(RIVET), TYPE28(NSTRAND) property.
RADIOSS (V4.4) ===> NASTRAN
1 -SHELL PSHELL
2 -TRUSS PROD
3 -BEAM PBAR
4 -SPRING PELAS
6 -ORTHOTROPIC SOLID PSOLID
8 -GENERAL SPRING PELAS
9 -ORTHOTROPIC SHELL PSHELL
10-COMP. SHELL PSHELL
11-COMP. SHELL PSHELL
12-3-NODES SPRING PELAS
13-BEAM TYPE SPRING PELAS
14-GENERAL SOLID PSOLID
32-PRETENSIONNER SPRING PELAS
33-JOINT TYPE SPRING PELAS
35-AIRBAG STITCH SPRING PELAS
36-PREDIT SPRING PELAS
12.3 MATERIAL PROPERTY:
All materials MAT1
12.4 BOUNDARY AND LOAD CONDITION:
DSI deletes PRESSURE LOAD.
RADIOSS (V4.4) ===> NASTRAN
BCS SPC
CLOAD NODE FORCE
INITIAL VELOCITY INITIAL VELOCITY
12.5 OTHERS:
DSI deletes all other cards that can't be converted.
RADIOSS (V4.4) ===> NASTRAN
FUNCTION LOAD CURVE
FRAME LOCAL COORDINATE
13.1 ELEMENT:
Delete RBE3, CGAP element.
NASTRAN ===> RADIOSS (V4.4)
CBAR BEAM
RBE2 RBODY
SHELL SHELL
SOLID SOLID
CELAS2 SPRING
(Create a node for spring direction.)
CELAS1 SPRING
(Create a node for spring direction.)
RBAR RIVET
CONM2 MASS
CBEAM BEAM
CROD TRUSS
CTUBE BEAM
ISOPARAMETRIC SHELL SHELL
13.2 ELEMENT PROPERTY:
DSI deletes PGAP properties.
NASTRAN ===> RADIOSS (V4.4)
PSHELL 1 -SHELL
PSOLID 14-GENERAL_SOLID
PBAR 3 -BEAM
PBEAM 3 -BEAM
PELAS 4 -SPRING
PROD 2 -TRUSS
PTUBE 3 -BEAM
13.3 MATERIAL PROPERTY:
NASTRAN ===> RADIOSS (V4.4)
MAT1 1 -ELASTIC
13.4 BOUNDARY AND LOAD CONDITION:
NASTRAN ===> RADIOSS (V4.4)
SPC BCS
NODE FORCE CLOAD
SHELL PRESSURE PLOAD
INITIAL VELOCITY INITIAL VELOCITY
13.5 OTHERS:
DSI deletes all other cards that can't be converted.
NASTRAN ===> RADIOSS (V4.4)
LOAD CURVE FUNCTION
LOCAL COORDINATE SYSTEM FRAME