LS-DYNA Database Binary Output Files

January 1994
Revised May 2002

Copyright © ${ }^{\text {© }}$ 1989-2002
LIVERMORE SOFTWARE
TECHNOLOGY CORPORATION
All Rights Reserved

Support Address
Livermore Software Technology Corporation
7374 Las Positas Road
Livermore, California 94550

Tel: 9254492500
Fax: 9254492507
Email: sales@1stc.com
Copyright © 1994-2001 by Livermore Software Technology Corporation
All rights Reserved

TABLE OF CONTENTS

INTRODUCTION 1
STATE DATABASE 3
CONTROL DATA 3
MATERIAL TYPE DATA 7
FLUID MATERIAL ID DATA 7
SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS 8
GEOMETRY DATA 9
USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS 11
ADAPTED ELEMENT PARENT LIST 12
SMOOTH PARTICLE HYDRODYNAMICS NODE AND MATERIAL LIST 12
RIGID ROAD SURFACE DATA 13
STATE DATA 14
ELEMENT DELETION OPTION 21
SMOOTH PARTICLE HYDRODYNAMICS NODE/ELEMENT STATE DATA 22
ROAD SURFACE MOTION 22
END OF FILE MARKER 22
TIME HISTORY DATABASE 23
CONTROL DATA 23
SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS 26
GEOMETRY DATA 27
USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS 28
TIME HISTORY DATA 30
INTERFACE FORCE DATABASE 39
CONTROL DATA 39
GEOMETRY DATA 40
USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS 41
STATE DATA 43
CRACK FILE 45

INTRODUCTION

Three databases are discussed, these are:

1. State Database ($\mathrm{G}=\mathrm{ptf}$, default name d3plot)
2. Time History Database ($\mathrm{F}=\mathrm{thf}$, default name d3thdt)
3. Interface Force Database ($\mathrm{S}=\mathrm{iff}$, no default name)

The purpose of this information is to give guidance on how to access and read the various databases.
The databases are written as word addressable fixed length binary files. The actual length depends on the amount of data saved, but will always be a multiple of 512 words. Since it is likely that the database cannot be contained in a single file of length, FEMLEN, the data will spread over several files known as a family of files. The root name for a family is the name of the first file member. Successive member names are compiled by appending a two or three digit number to the root name starting with 01,02 , through to 99 , then 100 and ending with 999 . Root names are limited to 75 characters. The original reason for a family of files was because the hard disks used for dyna3d runs could not cope with a single contiguous files large enough to contain all the data output. Subsequently, it has been found that splitting the output into separate files allows some unwanted data to be discarded and aids the copying, saving and movement of the data. Very large files can be impossible to transfer reliably over networks. Total output data can amount to several gigabytes or more depending on the model size.
For ls-dyna runs with mesh adaptivity, the root name has a two letter appendage for each adapted mesh. Starting from 'aa' through ' $a z$ ', then 'ba' through 'bz' and continuing up to ' $z z$ ', this gives a maximum of 676 possible adaptions. For example if the root name is 'd3plot' the subsequent files related to the original mesh are 'd3plot01', d3plot02, ..., after adaption the new mesh and undeformed geometry is put in 'd3plotaa' and the subsequent files for the new mesh are: 'd3plotaa01', d3plotaa $02, \ldots$ The next adapted mesh will be in file 'd3plotab' and so on. A set of files at a particular adaption can be read separately by giving the root name with appendage, as the base file name.
For example command: 'lspost d3plot' will read in all the file with root name 'd3plot' While: 'lspost d3plotab' will read in only files have 'd3plotab' in the name.
LSPOST will read the binary databases separately or combined.
Eg: 1spost d3plot, lspost d3thdt, lspost iffname, 1spost d3plot $\mathrm{h}=\mathrm{d} 3$ thdt $\mathrm{f}=\mathrm{iffname}$

LS-DYNA DATABASE

The file length used is set in the ls-dyna run as the default size of $7 \times 512 \times 512$ words. The size can be changed on the command line with the ' $\mathrm{x}=$ factor' parameter giving a size of: factor $\mathrm{x} 512 \times 512$ words.
If the initial data or state data is larger than the given file length, the data will automatically split across files. This condition is not desirable because it is not clear whether any non root file can be discarded without destroying the continuity of the data. Ls-dyna checks before writing to a file, to ensure that there is room left in the file to contain the data at a particular state time. If not, it closes the current family member and starts writing the state data in the next file member. The files are written with a block size of 512 words, and if the data does not complete the last block it is padded out. This means that files cannot be concatenated and read together. The word size is 4 bytes for the single precision version of ls-dyna and 8 bytes for the double precision version, unless 32 bit ieee format is defined, see *DATABASE_FORMAT, IBINARY.

FILE GENERAL STRUCTURE

The root file starts with a control words section, followed by node coordinates, then element connectivity for solids, thick shells, beams, and shells. Next are lists to reference the sequential internal numbering to the users number. State data is output next always starting with the time word. Data is of fixed length through the file members except where the mesh is adapted. The length of each area can be calculated from the information in the control words. The first file at adaption is like the root file in structure, so the new control words are used to recalculate the size of the subsequent data. The root file contains the initial data and also state data if there is room to write it. Further state data is written to the family members and each file will start with the time word provided data from the previous state did not overflow onto the file.

If the disk address, DA, of the data being written exceeds the maximum file length, then data is written into file number int(DA/FAMLEN) at location DA-FAMLEN*int(DA/FAMLEN). If the state length is greater than the remaining length, the disk address is increased to start the writing at the beginning of the next file.

STATE DATABASE (d3plot)

There are three sections in this database. The first contains 64 words of control information plus extensions. The second contains geometric information including the nodal coordinates and element connectivities and user numbering lists. The third section contains the results of the analysis at sequential output intervals. The output at a given time, called a state, contains a time word, global variables such as total energies and momenta for the whole model and each material (part), node data consisting of displacements, velocities, accelerations, and optionally temperatures, and finally element data that can include stresses and strains at integration points, and element deletion flags. The control data provides information about what is in the file and is used to calculate the various data length.
There are two other state database files, namely: d3drfl and d3part, these are similar to d3plot but contain less data. The dynamic relaxation file, d3drfl, provides the state at the end of the DR process, while d3part is state output for a reduced number of parts in the model.

CONTROL DATA

DISK			
VALUE	\#WORDS	ADDRESS	DESCRIPTION
Title	10	0	Model identification
Run time	1	10	Time of day
Date	1	11	Date
Machine	1	12	Computer identification
Code	1	13	Code name
Version	1	14	Code version, floating number, eg 960.0 it is used to distinguish the fp format, like cray, ieee, dpieee
NDIM	1	15	Number of dimensions (2 or 3). If 5 or 7 then an array of material types is read (MATTYP=1), element conectivities are unpacked and NDIM=3. If 4 then element connectivies are unpacked in the DYNA3D database and NDIM is reset to 3 . If >5 then state data contains movement of rigid road surface.
NUMNP	1	16	Number of nodal points
ICODE	1	17	Flag to identify finite element code=2: old DYNA3D, code $=6$: NIKE3D, LS-DYNA3D, LS-NIKE3D database

NGLBV	1	18	Number of global variable to be read with each state in
			LS-DYNA3D, NUMRW=number of rigid walls. $=6+6$ * (NUMMAT8 + NUMMAT2 + NUMMAT4 + NUMATT + NGPSPH) + NUMRW
IT	1	19	Flag for temperatures $=0$ none, $=1$ read in a temperature for each node
IU	1	20	Flag for current geometry ($=1$ or 0)
IV	1	21	Flag for velocities ($=1$ or 0)
IA	1	22	Flag for accelerations ($=1$ or 0)
NEL8	1	23	Number of 8 node solid elements
NUMMAT8	1	24	Number of materials used by the 8 node solids
BLANK	1	25	Insert zero
BLANK	1	26	Insert zero
NV3D	1	27	Number of values in database for each solid element. $=7+$ NEIPH-6*ISTRN
NEL2	1	28	Number of 2 node one-dimensional elements
NUMMAT2	1	29	Number of materials used by the 2 node 1D elements
NV1D	1	30	Number of values in database for each 1D element $=6+$ BEAMIP $* 5$
NEL4	1	31	Number of four node two-dimensional elements
NUMMAT4	1	32	Number of materials used by the 4 node 2D elements
NV2D	1	33	Number of values in database for each 2D element Are: MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS)+8 *IOSHL (3) $+4 * \operatorname{IOSHL}(4)+12 * \operatorname{ISTRN}$
NEIPH	1	34	Number of additional values per solid element to be written in the type 6 database, NV3D $=7+$ NEIPH
NEIPS	1	35	Number of additional values per integration point to be written into the type 6 database for shell elements.
MAXINT	1	36	Number of integration points dumped for each shell. The magnitude of MAXINT must be greater than or equal to 3 . if MAXINT $>=0$, then MDLOPT $=0$ MAXINT=MAXINT elseif MAXINT <0, then MDLOPT=1 MAXINT=abs(MAXINT) elseif MAXINT $<10,000$, then MDLOPT=2 MAXINT $=$ abs(MAXINT) $-10,000$

endif
MDLOPT controls the element deletion table (see below). The increase in state lengths allows deletion by nodes or elements.

EDLOPT	1	37	Element deletion flag (not standard) $=$ xxx 1 Solids deleted $=x x 1 x$ Beams deleted $=x 1 \mathrm{xx}$ Shells deleted $=1 \mathrm{xxx}$ Thick Shells deleted (Not used in LS-DYNA)
NMSPH	1	37	Number of SPH Nodes
NGPSPH	1	38	Number of SPH materials
NARBS	1	39	Additional storage required for arbitrary node and element numbering in type 6 database $=0$ Sequential numbering $=(10+$ NUMNP + NEL $8+$ NEL2 + NEL4 + NELT $)$.
NELT	1	40	Number of 8 node thick shell elements.
NUMMATT	1	41	Number of materials used for the 8 node thick shell element.
NV3DT	1	42	Number of values in database for each thick shell MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS)+ 12*ISTRN
IOSHL(1)	1	43	6 stress components flag, if $1000=1$ else $=0$
IOSHL(2)	1	44	Plastic strain flag, if $1000=1$ else $=0$
IOSHL(3)	1	45	Shell force resultants flag, if $1000=1$ else $=0$
IOSHL(4)	1	46	Shell thickness, energy +2 others, if $1000=1$ else $=0$
IALEMAT	1	47	Number of fluid material ids
NCFDV1	1	48	Bit flags for CFD nodal values
NCFDV2	1	49	Further bit flags for CFD nodal values
NADAPT	1	50	Number of adapted element to parent pairs (not implemented)
BLANK	13	51	Unused space.
ISTRN can only be computed as follows and if NEL4 >0.			
Then ISTRN $=1$, else ISTRN $=0$			
Or NELT >0			
Then ISTRN $=1$, else ISTRN $=0$			

MATERIAL TYPE DATA

The material section contains the material type numbers. This section is skipped if MATTYP is zero.
This data is required because those shell elements that are in a rigid body have no element data output in the state data section. The normal length of the shell element state data is:
NEL4 * NV2D, when the MATTYP flag is set the length is: (NEL4 - NUMRBE) * NV2D. When reading the shell element data, the material number must be check against IRBRTYP list to find the element's material type. If the type $=20$, then all the values for the element to zero. This option is set in *DATABASE_EXTENT_BINARY, with DCOMP=2

VALUE	LENGTH	DESCRIPTION
NUMRBE	1	Number of rigid body shell elements.
NUMMAT	1	Number of materials in the database.
IRBTYP	NUMMAT	Material type numbers

FLUID MATERIAL ID DATA

The fluid material section contains the material numbers for solid elements that are used to define an Euler grid or Arbitrary Lagrangian Euler mesh. This section is skipped if IALEMAT is zero.

VALUE
FLUIDID

LENGTH DESCRIPTION
IALEMAT Fluid material number used in solid element mesh

LS-DYNA DATABASE

SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS

This section is only output if NMSPH >0. The section is a list of flags to indicate what SPH data is output for each SPH node/element. The first number is the length in words for this array, currently $=9$.
SPH elements are centered at nodes, and cover a spherical volume defined by the radius of influence. They do not have a connectivity with other SPH elements. They should be displayed as a dot or a spherical surface, with radius scaling to reduce the size and enable each element to be distinguishable.

As follows:

$$
\begin{array}{ll}
\operatorname{isphfg}(1)=9 & - \text { length of sph flags array } \\
\text { isphfg }(2)=1 & \text { - radius of influence } \\
\text { isphfg(3)=1 } & \text { - pressure in particle } \\
\text { isphfg(4)=6 } & -6 \text { true stress components } \\
\text { isphfg }(5)=1 & - \text { plastic strain, }>0.0 \text { if effective stress exceeds yield strength } \\
\text { isphfg }(6)=1 & - \text { density of particle material } \\
\text { isphfg }(7)=1 & \text { - internal energy (strain) } \\
\text { isphfg }(8)=1 & \text { - number of neighbors affecting particle } \\
\text { isphfg }(9)=6 & -6 \text { true strain components }
\end{array}
$$

If the value of isphfg $(2-9)=0$, then the particular data item is not output for the particle. To calculated the size of data add the isphfg values from isphfg(2) through isphfg(9) and add one. One value is always output which is the material number as a floating point number for each particle.
If this value is negative then the particle has been deleted from the model.
Full output for each particle is:
mat\#, radius, pressure, $\{s x, s y, s z, s x y, s y z, s x z\}$ ps, rho, ie, nn, \{ex, ey, ez, exy, eyz, exz\}.
Hence total size is 19 .
When a particle is deleted from the model, data is still output for it because the length of data must always be the same for each state.

GEOMETRY DATA

The geometry section contains the nodal coordinates and the element connectivities. The ordering of the nodal points is the same as the ordering of the nodal data in the state data that follows. If NDIM $=3$ the connectivities are assumed to be packed with 3 integers per word, if NDIM >3, then connectivities are not pack, (the default for LS-DYNA, LS-DYNA3D and LSNIKE3D. The order of the elements are 3, 2, and 1 dimensional elements if the database is ICODE=2 or 6 .

VALUE	LENGTH	DESCRIPTION
X(3,1)	NDIM*NUMNP	Array of nodal coordinates X1,Y1,Z1, X2,Y2,Z2, X3,Y3,Z3, $\ldots, \mathrm{Xn}, \mathrm{Yn}, \mathrm{Zn}$
IX8(9,1)	$9 *$ NEL8	Connectivity and material number for each 8 node solid element
IXT(9,1)	$9 *$ NELT	Connectivity and material number for each 8 node thick shell element.
IX4(5,1)	$5 *$ NEL4	Connectivity and material number for each 4 node shell element
IX2 6,1$)$	6^{*} NEL2	Connectivity, orientation node, two null entries, and the material number for each 2 node beam element

Note the node numbers are the LS-DYNA internal numbers for nodes, these will be the same as the user's numbers if NARBS $=0$, otherwise, the arbitrary number lists are used to find the user's numbers, similarly, for element numbers and material numbers.

Beam Element Section Information

These data are related to the keyword: "*INTEGRATION_BEAM and Circular Sections. Beam types are: circular/tube, W, C, Angle, T, Box, Z sections. . Other beams are taken to be box or solid in section. For the defined beam sections the numbers in the beam connectivity array are as follows:
The first node and second node for ends of beam.
The third node indicates the direction from the first node for the S-axis. If zero there is no sectional axis (tie only).
The first to second node is the direction of the R -axis.
The connectivity array numbers 4 through 6 provide data for the section height, width and type.
These data are stored as integers are follows:
Word $4=((\operatorname{int})(100 *$ Beam Height $/$ Beam Length $) \ll 6) \mid$ type
Word $5=($ int $)(100 *$ Beam Width $/$ Beam Length $)$
Word $6=$ Material number.
For Circular Sections
Beam Height is the outer diameter and Beam Width is the inner diameter.

LS-DYNA DATABASE

Types are: $0=$ default; $1=$ circular; $2=\mathrm{W} ; 3=\mathrm{C} ; 4=$ Angle; $5=\mathrm{T} ; 6=$ box; $7=\mathrm{Z}$ and $8=$ trapezoidal; $9=$ spotweld; $10=$ spring; $11=$ damper.

USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS

Skip this section if NARBS (disk address 39) is zero. The user node and element numbers must be in ascending order. It assumed that if this option is used all node and element data anywhere in the databases is in ascending order in relation to the user numbering. The total length of the data in this data is equal to:
NARBS=10+NUMNP+NEL8+NEL2+NEL4+NELT,
if sequential numbering is used of the materials. For arbitrary material numbering the total length is increased by $6+$ NUMMAT8+NUMMAT4+NUMMAT2+NUMMATT. Material numbers are not in ascending order.
VALUE
NSORT
NSRH
NSRB
NSRS
NSRT
NSORTD 1
NSRHD 1
NSRBD 1
NSRSD 1
NSRTD
NSRMA
NSRMU

LENGTH
1

1

1

1

1

1

DESCRIPTION

Pointer to arbitrary node numbers in LS-DYNA source code, a negative sign flags that arbitrary material identification numbers are also used.

Pointer to arbitrary solid element numbers in LS-DYNA source code: =NSORT+NUMNP

Pointer to arbitrary beam element numbers in LS-DYNA source code:
=NSRH+NEL8
Pointer to arbitrary shell element numbers in LS-DYNA source code:
$=$ NSRB + NEL2
Pointer to arbitrary thick shell element numbers in LS-DYNA source code:
=NSRS+NEL4
Number of nodal points
Number of 8 node solid elements
Number of 2 node beam elements
Number of 4 node shell elements
Number of 8 node thick shell elements
Pointer to an array in the LS-DYNA source code that list the material ID's in ascending order.

Pointer to an array in the LS-DYNA source code that gives the material ID's in the actual order that they are defined in the user input.

VALUE
NSRMP

NSRTM

NUMRBS 1
NMMAT 1
NUSERN
NUSERH
NUSERB
NUSERS
NUSERT
NORDER
NSRMU
NSRMP

LENGTH
1

1

1

NSORTD
NSORTH
NSORTB
NSORTS
NSORTT
NMMAT
NMMAT
NMMAT

DESCRIPTION

Pointer to an array in the LS-DYNA source code that gives the location of a member in the array originating at NSRMU for each member in the array starting at NSRMA.
Total number of materials

Total number of nodal rigid body constraint sets
Total number of materials
Array of user defined node numbers
Array of user defined solid element numbers
Array of user defined beam element numbers
Array of user defined shell element numbers
Array of user defined thick shell numbers
Ordered array of user defined material ID's
Unordered array of user material ID's
Cross reference array

ADAPTED ELEMENT PARENT LIST (not implemented)

List of element id pairs for H-type shell element adaptivity.
Length of data is 2 * NADAPT, pairs are element number and element parent number

SMOOTH PARTICLE HYDRODYNAMICS NODE AND MATERIAL LIST

If NMSPH $>0 \quad$ List of sph node and its material number
Length of data $2 *$ NUMSPH

RIGID ROAD SURFACE DATA

If NDIM >5	
NNODE	Number of nodes in road surface
NSEG	Total number of 4 noded road surface segments
NSURF	Number of road surfaces
MOTION	Flag to indicate motion data is output for each state
NODEID	NNODE list of IDs
SURFNODE	XYZ Coordinate for each node
Lists of 4 noded segments for each surface	
SURFID	Surface ID Number
SURFNSEG	Number of segments in surface
SURFSEGS	SURFNSEG of 4 node ids for each segment
Length of data $=4+$ NNODE $+3 *$ NNODE + NSURF * $(2+4 *$ SURFNSEG $)$	

STATE DATA

The state data has three parts:

- Time word and global data
- Node data
- Element data for solids, shell, and beams, respectively

VALUE	LENGTH	
TIME	1	Time word
GLOBAL	NGLBV	Global variables for this state. LS-DYNA3D Global Variables: KE, IE, TE, X, Y, and Z velocity, External Work IE for each material KE for each material X, Y, and Z velocity for mat 1 ... X, Y, and Z velocity for mat n Mass for each material Force for each rigid wall $=6+6 *($ NUMMAT $8+$ NUMMAT2 + NUMMAT4 + NUMMATT + NGPSPH) + NUMRW
NODEDATA	NND	Total nodal values for state. FOR LS-DYNA3D and LS-DYNA $=(\mathrm{IT}+\mathrm{NDIM} *(\mathrm{IU}+\mathrm{IV}+\mathrm{IA})) *$ NUMNP where IT=temperature flag, $\mathrm{IU}=$ cooordinates flag, $\mathrm{IV}=$ velocities flag, and IA=accelerations flag.
CFDDATA	CFD	Bit flag: NCFDV1, bits from right to left Eg Pressure, Resultant Vorticity, and Density NCFDV1 $=2+32+1024=1058$ 2 Pressure 3 X Vorticity 4 Y Vorticity 5 Z Vorticity 6 Resultant Vorticity 7 Enstrophy 8 Helicity 9 Stream Function 10 Enthalpy 11 Density 12 Turbulent KE 13 Dissipation 14-20 Eddy Viscosity

ELEMDATA ENN | Total element data for state. |
| :--- |
| $=$ NEL $8 * N V 3 D+N E L 2 *$ NV1D+NEL4*NV2D |
| The organization of the element data for each |
| element type is described below. The data for the |
| solid elements (7 values/element) is printed first, |
| followed by the data for the beam elements (6 |
| values/element), and then the data for the shell |
| elements (typical 33 or 45 values/element |
| depending on whether the strains are included). |

This state data is repeated for each state in the database.
Element data is defined at the integration points within the element. Contour and fringe plots require that the data be extrapolated to the nodal points. In LS-TAURUS and LS_POST the element values are averaged at the nodes. Element strains are not output by default, these are only output for solids, shell, and thick shell when *DATABASE_EXTENT_BINARY, STRFLG=1

LS-DYNA DATABASE

SOLID ELEMENTS - 8 node Hexahedron, other solid elements like wedge, pyramid, and tetrahedron are identified by repeated final connectivities. Eg tetrahedron $=1,2,3,4,4,4,4,4$

The database for solid elements consists of 7+NEIPH values per element. NEIPH extra values are defined if and only if NEIPH is greater than zero. If strain components are output, then the last 6 neiph values are true strains: ex, ey, ez, exy, eyz, exz, in the global system. They are:

1. Sigma-x (true stress in the global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
8. First extra value (if $\mathrm{NEIPH}>0$)
9. Second extra value (if NEIPH >1)
10. Etc. until NEIPH extra values are defined if ISTRN=1

7+NEIPH-5. Epsilon-x
7+NEIPH-4. Epsilon-y
7+NEIPH-3. Epsilon-z
7+NEIPH-2. Epsilon-xy
7+NEIPH-1. Epsilon-yz
7+NEIPH. Epsilon-zx

For thick shell elements the database contains NV3DT $=$ MAXINT $*(6 * \operatorname{IOSHL}(1)+$ IOSHL (2) + NEIPS) +12 * ISTRN values per element. Three sets of global stresses are always put into the database for each thick shell and are located at the mid surface, the inner integration point surface, and the outer integration point surface, respectively. If one integration point is used the same through the thickness stress state is outputted three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If the integration point does not lie at the center, ie, an even number of integration points through the thickness, a value is computed that is an average of the two integration point nearest the mid surface.
The IOSHL flags indicate which shell element data is included which is suppressed.
The flags are set in ls-dyna by *DATABASE_EXTENT_BINARY, SIGFLG, EPSFLG, RLFLG, and ENGFLG

The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for mid surface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable

*. Define NEIPS additional history values here for inner surface

15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx

LS-DYNA DATABASE

21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
*. If ISTRN=1, then define strain components Epsilon ($\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x y}, \mathbf{y z}, \mathbf{z x}$) here for inner surface and outer surface

If MAXINT >3 then define an additional (MAXINT-3)* $(6 * \operatorname{IOSHL}(1)+1 * \operatorname{IOSHL}(2)+$ NEIPS $)$ quantities here.

For beam elements the database contains NV1D $=6$ values per element. They are:

1. Axial force
2. S shear resultant
3. T shear resultant
4. $\quad \mathrm{S}$ bending moment
5. T bending moment
6. Torsional resultant

If there are values output at beam integration points, then NV1D $=6+5 *$ BEAMIP

1. RS shear stress
2. TR shear stress
3. Axial stress
4. Plastic strain
5. Axial strain

BEAMIP is set in *DATABASE_EXTENT_BINARY

For shell elements the database contains NV2D values, where:
$\mathrm{NV} 2 \mathrm{D}=$ MAXINT* $(6 * \operatorname{IOSHL}(1)+1 * \operatorname{IOSHL}(2)+\mathrm{NEIPS})+8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)+$ $12 *$ ISTRN values per deformable element. If MATTYP $=1$ and $\operatorname{IRBTYP}(\mathrm{I})=20$, where $\mathrm{I}=$ internal element number, then the material is rigid and the compressed database contains no data for the element. If the minimum value of $M A X I N T$ is used, i.e., 3 , the stresses are typically located at the mid surface, the inner surface, and the outer surface, respectively. If one integration point is used the stress is written three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If no integration point lies at the center, i.e., an even number of integration points through the thickness, a value is computed that is an average of the two integration point lying nearest the mid surface.

The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-x
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for mid surface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable

*. Define NEIPS additional history values here for inner surface

LS-DYNA DATABASE

15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
If MAXINT >3 then define an additional (MAXINT-3)* (6*IOSHL(1) $+1 * \operatorname{IOSHL}(2)+$ $8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)+$ NEIPS $)$ quantities here
22. Bending moment-Mx (local shell coordinate system)
23. Bending moment-My
24. Bending moment-Mxy
25. Shear resultant-Qx
26. Shear resultant-Qy
27. Normal resultant-Nx
28. Normal resultant-Ny
29. Normal resultant-Nxy
30. Thickness
31. Element dependent variable
32. Element dependent variable
33. Internal energy (if and only if ISTRN=0)

The following quantities are expected if and only if ISTRN $=1$
33. eps-x (inner surface strain in global system)
34. eps-y
35. eps-z
36. eps-xy
37. eps-yz
38. eps-zx
39. eps-x (outer surface strain in global system)
40. eps-y
41. eps-z
42. eps-xy
43. eps-yz
44. eps-zx
45. Internal energy (if and only if NV2D $>=45$)

Element Deletion Option

Skip this section if the word MAXINT is greater than or equal to zero, (MDLOPT=0). If MDLOPT $=1$, then the list is equal to the number of nodal points (NUMNP) and contains a one if the node is visible and a zero if the node is not visible, (only used in vec-dyna3d). If MDLOPT $=2$, then the list equals the total number of elements (NEL8 + NELT + NEL4 + NEL2), in this order, and each value is set to the element material number or $=0$, if the element is deleted. All these numbers are output as floating point values and not integers.

Smooth Particle Hydrodynamics Node/Element State data

This section is only output if NMSPH >0
For each SPH node the follow values are output:
NUM_SPH_DATA $=1+\sum$ isphfg(i), $\mathrm{i}=2: 9$
Currently $\operatorname{isphfg}(1)=9$, ie number of sph data flags, this could be changed in the future.
Length of data = NUM_SPH_DATA * NUMSPH
Material number, if $=0$ then element is deleted.
If isphfg $(2)=1$, radius of particle influence
If isphfg(3) $=1$, pressure in particle
If isphfg(4) $=6$, stress components for particle, $s x, s y, s z, s x y, s y z, ~ s x z$
If isphfg(5) $=1$, plastic strain for particle
If isphfg(6) $=1$, density of particle material
If isphfg $(7)=1$, internal energy of particle
If isphfg $(8)=1$, number of particle neighbors
If isphfg $(9)=6$, strain components for particle, ex, ey, ez, exy, eyz, exz

Road Surface Motion

If NDIM >5 output rigid body displacement, $d x, d y, d z$ and velocity, $v x, v y, v z$ of each road surface.
Length of data $=6 *$ NSURF

End of File Marker

Value $=-999999.0$

TIME HISTORY DATABASE (d3thdt)

There are three sections in the LS-DYNA time history database. The first used to contain 144 words of control information, but now depends upon the number of node and elements the user defines in LS-DYNA. The second contains geometric information including the nodal coordinates and element connectivities. The third section contains the results of the analysis at sequential output intervals for a subset of solids, beams, and shells. The output at a given time, called a state, contains a time word, global variables such as total energies and momenta, nodal data consisting of accelerations, velocities, and displacements, and finally element data is written that may include stresses and strains at integration points. The control information provides information on what is in the file and which database is contained.

CONTROL DATA

DISK			
VALUE	\#WORDS	ADDRESS	DESCRIPTION
Title	10	0	Model identification
Run time	1	10	Time of day
Date	1	1	Date
Machine	1	12	Computer identification
Code	1	13	Code name
Version	1	14	Code version, a real number, not integer
NDIM	1	15	Number of dimensions (2 or 3), is set to 4 if element connectivies are unpacked in the LSDYNA database and NDIM is reset to 3
NUMNP	1	16	Number of nodal points
ICODE	1	17	Flag to identify finite element code $=2$ old DYNA3D, NIKE3D database $=6$ new LS-DYNA3D, LS-NIKE3D, LS-DYNA3D, LS-DYNA database
NGLBV	1	18	Number of global variables to be read in each state
IT	1	19	Flag for temperatures $=0$ none, $=1$ read in a temperature for each node
IU	1	20	Flag for current geometry ($=1$)
IV	1	21	Flag for velocities (=1)
IA	1	22	Flag for accelerations ($=1$)

NEL8	1	23	Number of 8 node solid elements
NUMMAT8	1	24	Number of materials used by the 8 node solids
NDS	1	25	Number of node blocks for plotting
NST	1	26	Number of element blocks for plotting. $=\mathrm{NSTH}+\mathrm{NSTB}+\mathrm{NSTS}+\mathrm{NSTT}$
NV3D	1	27	Number of values in database for each solid element
NEL2	1	28	Number of 2 node one-dimensional elements
NUMMAT2	1	29	Number of materials used by the 2 node 1D elements
NV1D	1	30	Number of values in database for each 1D element
NEL4	1	31	Number of four node two-dimensional elements
NUMMAT4	1	32	Number of materials used by the 4 node 2D elements
NV2D	1	33	Number of values in database for each 2D element
NEIPH	1	34	Number of additional values per solid element to be written in the type 6 database $=$ NEIPH-6*ISTRN
NEIPS	1	35	Number of additional values per integration point to be written into the type 6 database for shell elements
MAXINT	1	36	Number of integration points dumped for each shell element.
NMSPH	1	37	Number of SPH Nodes
NGPSPH	1	38	Number of SPH materials
NARBS	1	39	Additional storage required for arbitrary node and element numbering in type 6 database
BLANK	3	40	Unused space
IOSHL(1)	1	43	stress components flag ($=1000$ yes)
IOSHL(2)	1	44	Strain components, ISTRN ($=1000$ yes)
IOSHL(3)	1	45	Shell force resultants ($=1000$ yes)
IOSHL(4)	1	46	Shell thickness, energy +2 others ($=1000$ yes)
BLANK	1	47	Unused space, ignore value
NCFDV1	1	48	Bit flags for CFD nodal values
NCFDV2	1	49	Further bit flags for CFD nodal values
BLANK	8	50	Unused space
NSTP	1	58	Number of SPH element blocks

IFLAGD	159		Number of node blocks +1000 flag
NSTH	160		Number of solid element blocks
NSTB	161		Number of beam element blocks
NSTS	162		Number of shell element blocks
NSTT	163		Number of thick shell element block
NDSB	$2 *$ NDS	64	Node blocks for which time histories are output. The locations $2 \mathrm{n}-1$, where $\mathrm{n}=1$ through NDS correspond to the first node in the block and locations 2 n correspond to the last node in the block.
NSTHB	$2 * \mathrm{NSTH}$	$64+2 * N D S$	DS Solid element blocks start and end numbers These are defined in a similar manner to the nodal time history blocks
NSTBB	$2 *$ NSTB	$\begin{aligned} & 64+2 * \mathrm{NDS} \\ & +2 * \mathrm{NSTH} \end{aligned}$	DS Beam element block start and end numbers
NSTSB	2*NSTS	$\begin{aligned} & 64+2 * \mathrm{NDS} \\ & +2 * \mathrm{NSTH} \\ & +2 * \mathrm{NSTB} \end{aligned}$	DS Shell element block start and end numbers
NSTTB	$2 *$ NSTT	$\begin{aligned} & 64+2 * \mathrm{NDS} \\ & +2 * \mathrm{NSTH} \\ & +2 * \mathrm{NSTB} \\ & +2 * \mathrm{NSTS} \end{aligned}$	DS Thick shell element block start and end numbers
NSTPB	2*NSTP	$\begin{aligned} & 64+2 * \mathrm{NDS} \\ & +2 * \mathrm{NSTH} \\ & +2 * \mathrm{NSTB} \\ & +2 * \mathrm{NSTS} \\ & +2 * \mathrm{NSTT} \end{aligned}$	DS SPH element block start and end numbers H B S T

ISTRN can only be computed as follows and if NSTS >0.
If NV2D-MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS)+8*IOSHL(3)+4*IOSHL(4) >10
Then ISTRN $=1$, else ISTRN $=0$
Or NSTT > 0
If NV3DT-MAXINT*(6*IOSHL(1)+IOSHL(2)+NEIPS) >10
Then ISTRN $=1$, else ISTRN $=0$

LS-DYNA DATABASE

SMOOTH PARTICLE HYDRODYNAMICS ELEMENT DATA FLAGS

This section is only output if NMSPH >0. The section is a list of flags to indicate what SPH data is output for each SPH node/element. The first number is the length in words for this array, currently $=9$.
SPH elements are centered at nodes, and cover a spherical volume defined by the radius of influence. They do not have a connectivity with other SPH elements. They should be displayed as a dot or a spherical surface, with radius scaling to reduce the size and enable each element to be distinguishable.
As follows:

$$
\begin{array}{ll}
\operatorname{isphfg}(1)=9 & - \text { length of sph flags array } \\
\operatorname{isphfg}(2)=1 & \text { - radius of influence } \\
\text { isphfg(3)=1 } & - \text { pressure in particle } \\
\text { isphfg(4)=6 } & -6 \text { true stress components } \\
\text { isphfg(5)=1 } & - \text { plastic strain, }>0.0 \text { if effective stress exceeds yield strength } \\
\text { isphfg(6)=1 } & - \text { density of particle material } \\
\text { isphfg(7) }=1 & \text { - internal energy (strain) } \\
\text { isphfg }(8)=1 & \text { - number of neighbors affecting particle } \\
\text { isphfg(9)=6 } & -6 \text { true strain components }
\end{array}
$$

If the value of isphfg $(2-9)=0$, then the particular data item is not output for the particle. To calculated the size of data add the isphfg values from isphfg(2) through isphfg(9) and add one. One value is always output which is the material number as a floating point number for each particle.
If this value is negative then the particle has been deleted from the model.
Full output for each particle is:
mat\#, radius, pressure, $\{s x, s y, s z, s x y, s y z, s x z\}$ ps, rho, ie, nn, \{ex, ey, ez, exy, eyz, exz\}.
Hence total size is 19.
When a particle is deleted from the model, data is still output for it because the length of data must always be the same for each state.

GEOMETRY DATA

The geometry section contains the nodal coordinates and the element connectivities. The ordering of the nodal points is assumed to be the same as the ordering of the nodal data in the state data that follows. The connectivities are assumed to be packed with 3 integers per word unless NDIM is set to 4 as in the new LS-DYNA3D, LS-NIKE3D, LS-DYNA databases. The order of the elements are 3,2 , and 1 dimensional elements if the database is ICODE $=2$ or 6 .

VALUE
$\mathrm{X}(3,1)$
IX8(9,1)
IXT(9,1)
IX2(6,1)

IX4(5,1)

LENGTH
NDIM*NUMNP
9*NEL8
9*NELT
6*NEL2

5*NEL4

DESCRIPTION

Array of nodal coordinates $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$, X2,Y2,Z2,X3,Y3,Z3, ...,Xn,Yn,Zn
Connectivity and material number for each 8 node solid element
Connectivity and material number for each 8 node thick shell element
Connectivity, orientation node, two null entries, and the material number for each 2 node beam element

Connectivity and material number for each 4 node shell element

USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS

Skip this section if NARBS (disk address 39) is zero. The user node and element numbers must be in ascending order. It is assume that if this option is used all the node and element data in the databases is in ascending order in relation to the user numbering. The total length of the data in this database is equal to
NARBS=10+NUMNP+NEL8+NEL2+NEL4+NELT
if sequential numbering is used of the materials. For arbitrary material numbering the total length is increased by $6+$ NUMMAT8+NUMMAT4+NUMMAT2+NUMMATT. Material numbers are not in ascending order.

VALUE
NSORT

NSRH

NSRB

NSRS

NSRT

NSORTD 1
NSRHD 1
NSRBD 1
NSRSD 1
NSRTD
NSRMA

NSRMU

LENGTH
1

1

1

1

1

1

1

DESCRIPTION

Pointer to arbitrary node numbers in LS-DYNA source code, a negative sign flags that arbitrary material identification numbers are also used.

Pointer to arbitrary solid element numbers in LS-DYNA source code: =NSORT+NUMNP

Pointer to arbitrary beam element numbers in LS-DYNA source code:
=NSRH+NEL8
Pointer to arbitrary shell element numbers in LS-DYNA source code:
=NSRB+NEL2
Pointer to arbitrary thick shell element numbers in LS-DYNA source code:
=NSRS+NEL4
Number of nodal points
Number of 8 node solid elements
Number of 2 node beam elements
Number of 4 node shell elements
Number of 8 node thick shell elements
Pointer to an array in the LS-DYNA source code that list the material ID's in ascending order.

Pointer to an array in the LS-DYNA source code that gives the material ID's in the actual order that they are defined in the user input

VALUE	LENGTH	DESCRIPTION		
NSRMP	1	Pointer to an array in the LS-DYNA source code that gives the location of a member in the array originating at NSRMU for each member in the array starting at NSRMA.		
NSRTM	1	Total number of materials	NUMRBS $\quad 1 \quad$	Total number of nodal rigid body constraint sets.
:---				
NMMAT				

TIME HISTORY DATA

The time database contains the following data:

- Time word
- Node data
- Node data for solids, thick shells, and shells, respectively
- Element data for solids, thick shells, beams, and shells, respectively
$\left.\begin{array}{lll}\text { VALUE } & \text { LENGTH } & \begin{array}{c}\text { DESCRIPTION } \\ \text { TIME }\end{array} \\ & 1 & \text { Time word }\end{array}\right]$ GLobal variables for this state.

SKIP THE FOLLOWING DATA IF THE NUMBER OF NODE BLOCKS FOR PLOTTING IS ZERO (VALUE NUMDS AT DISK ADDRESS 25)

TIME	1	Time word
NODEDATA	NND	Total nodal values for state where
		NLN $=10^{*}$ TNODS where TNODS is the number
of nodes put into database. The database contains		
	TNODS vectors each with up to 10 components:	
	temperature (if IT $=1) ; x, y$, and z coordinates; x,	
	y, and z velocities; and $x, y, a n d z$ accelerations.	

CFDDATA	CFD
	Bit flag: NCFDV1, bits from right to left Eg Pressure, Resultant Vorticity, and Density NCFDV1 $=2+32+1024=1058$ 14 Pressure
15 X Vorticity	
16 Y Vorticity	
17 Z Vorticity	
18 Resultant Vorticity	
19 Enstrophy	
20 Helicity	
21 Stream Function	
22 Enthalpy	
23 Density	
24 Turbulent KE	
25 Dissipation	
$14-20$ Eddy Viscosity	
Nit flag: NCFDV2	
$2-11$ Species 1 through 10	
Count number of bits on * NUMNP	

SKIP THE FOLLOWING DATA IF THE NUMBER OF ELEMENT BLOCKS FOR IS ZERO (VALUE NUMDS AT DISK ADDRESS 26)
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SOLID ELEMENTS ****

TIME

SOLIDDATA

1

ENV

Time word

Total nodal values for solid elements where $\mathrm{ENV}=56$ *TBELM where THELM is the total number of solid elements to be put into the database. The data contains THELM vectors each with 56 components ordered as follows: 8 connectivities: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates for each of the 8 nodes; and, lastly, x, y, z velocities for each of the 8 nodes.

For solid elements the database contains (7+NEIPH-6*ISTRN) values per element. One set of global stresses are always put into the database for each solid element followed by NEIPH history values. Only data for elements defined in the time history blocks is output. The ordering of the data follows:

1. Sigma-x (true stress in the global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
8. First extra value (if NEIPH >0)
9. Second extra value (if NEIPH >1)
10. Etc. until NEIPH extra values are defined if ISTRN=1

7+NEIPH-5. Epsilon-x
7+NEIPH-4. Epsilon-y
7+NEIPH-3. Epsilon-z
7+NEIPH-2. Epsilon-xy
7+NEIPH-1. Epsilon-yz
7+NEIPH. Epsilon-zx
****SKIP THE FOLLOWING IF THERE IS NO DATA FOR THICK SHELLS ****

TIME

TSHELLDATA

1

ENV

Time word

Total nodal values for thick shell elements where ENV $=56$ *TBSEL where TBSEL is the total number of thick shell elements in the database. The data contains TBSEL vectors each with 56 components ordered as follows: 8 connectivities: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates for each of the 8 nodes; and, lastly, x, y, z velocities for each of the 8 nodes.

****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SHELL ELEMENTS ****

TIME
SHELLDATA ENVS

Time word
Total nodal values for shell elements where ENVS $=28 *$ TSELM where TSELM is the total number of shell elements in the database. The data contains TSELM vectors each with 28 components ordered as follows: 4 connectivities: x, y, z coordinates for each of the 4 nodes; and, lastly, $\mathrm{x}, \mathrm{y}, \mathrm{z}$ velocities for each of the 4 nodes.

****SKIP THE FOLLOWING IF THERE IS NO DATA FOR THICK SHELLS ****

For thick shell elements the database contains NV3DT values per element. Three sets of global stresses are always put into the database for each thick shell and are located at the mid surface, the inner surface, and the outer surface, respectively. If one integration point is used the single state is written three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If no integration point lies at the center, i. e. an even number of integration points through the thickness, a value is computed that is an average of the two integration point lying nearest the mid surface. Only data for elements defined in the time history blocks is output. The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for midsurface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for inner surface
15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
22. Effective plastic strain or material dependent variable
. Define NEIPS additional history values here for outer surface If MAXINT >3 then define an additional (MAXINT-3 $)^{}(6 * \operatorname{IOSHL}(1)+1 * \operatorname{IOSHL}(2)+$ NEIPS $)$ quantities here
*. If ISTRN=1, then define strain components Epsilon ($\mathbf{x}, \mathrm{y}, \mathrm{z}, \mathrm{xy}, \mathrm{yz}, \mathbf{z x}$) here for inner surface and outer surface

****SKIP THE FOLLOWING IF THERE IS NO DATA FOR BEAM ELEMENTS ****

TIME

BEAMDATA

1

BESV

Time word

Total element values for beam elements where BESV=NV1D*TBELM. The data contains TBELM vectors each with NV2D values ordered as described below.

For beam elements the database contains NV1D $=6$ values per element. They are:

1. Axial force
2. S shear resultant
3. T shear resultant
4. $\quad \mathrm{S}$ bending moment
5. T bending moment
6. Torsional resultant

If there are values output at beam integration points, then NV1D $=6+5 *$ BEAMIP
7. RS shear stress
8. TR shear stress
9. Axial stress
10. Plastic strain
11. Axial strain

BEAMIP is set in *DATABASE_EXTENT_BINARY

LS-DYNA DATABASE

****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SHELL ELEMENTS ****
For shell elements the database contains NV2D values per element. If the minimum value of MAXINT is 3 , then the stresses are typically located at the mid surface, the inner surface, and the outer surface, respectively. If one integration point is used the stress is written three times. If two integration points are used then the mid surface value is taken as the average value. The inner values of the stress are always set to the values at the innermost integration point and likewise for outer values. If no integration point lies at the center, i. e. an even number of integration points through the thickness, a value is computed that is an average of the two integration point lying nearest the mid surface. Only data for elements defined in the time history blocks is output. The ordering of the data follows:

1. Sigma-x (mid surface true stress in global system)
2. Sigma-y
3. Sigma-z
4. Sigma-xy
5. Sigma-yz
6. Sigma-zx
7. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for midsurface
8. Sigma-x (inner surface true stress in global system)
9. Sigma-y
10. Sigma-z
11. Sigma-xy
12. Sigma-yz
13. Sigma-zx
14. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for inner surface
15. Sigma-x (outer surface true stress in global system)
16. Sigma-y
17. Sigma-z
18. Sigma-xy
19. Sigma-yz
20. Sigma-zx
21. Effective plastic strain or material dependent variable
*. Define NEIPS additional history values here for outer surface
If MAXINT >3 then define an additional (MAXINT-3)* (6*IOSHL(1) +1 *IOSHL(2) + $8 * \operatorname{IOSHL}(3)+4 * \operatorname{IOSHL}(4)+$ NEIPS $)$ quantities here
22. Bending moment-mx (local shell coordinate system)
23. Bending moment-my
24. Bending moment-mxy
25. Shear resultant-qx
26. Shear resultant-qy
27. Normal resultant-nx
28. Normal resultant-ny
29. Normal resultant-nxy
30. Thickness
31. Element dependent variable
32. Element dependent variable
33. Internal energy (if and only if ISTRN=0)

The following quantities are expected if and only if ISTRN=1
33. eps-x (inner surface strain in global system)
34. eps-y
35. eps-z
36. eps-xy
37. eps-yz
38. eps-zx
39. eps-x (outer surface strain in global system)
40. eps-y
41. eps-z
42. eps-xy
43. eps-yz
44. eps-zx
45. Internal energy (if and only if ISTRN=1)

LS-DYNA DATABASE

****SKIP THE FOLLOWING IF THERE IS NO DATA FOR SPH ELEMENTS ****

TIME
SPHDATA

1
SPHV

Time word
Data for each sph element according to the sph flags SPHV=NSTP*NUM_SPH_DATA

INTERFACE FORCE DATABASE

There are three sections in the interface force database. The first contains 64 words of control information. The second contains geometric information, i.e. the nodal coordinates and segment connectivities for each segment contained in the master and slave surface definitions. The third section contains the results of the analysis at sequential output intervals. The output at a given time is called a state. The state contains a time word, global variables such as total energies and momenta, nodal data consisting of accelerations, velocities, and displacements, and finally segment data is written that include the pressure and shear stress acting on each segment and nodal forces for each node that defines the segment. The control information that follows provides information as to what is in the file and which database is being processed.

CONTROL DATA

	DISK		
VALUE	\#WORDS	ADDRESS	DESCRIPTION
Title	10	0	Problem identification
Run time	1	10	Time of day
Date	1	1	Date
Machine	1	12	Computer identification
Code	1	13	Code name
Version	1	14	Code version
NDIM	1	15	Insert 4 for DYNA3D database
NUMNP	1	16	Number of nodal points
ICODE	1	17	Insert 6 for DYNA3D database
NGLBV	1	18	Number of global variable to be read
BLANK	1	19	Insert zero
IU	1	20	Flag for current geometry (=1)
IV	1	21	Flag for velocities (=1)
BLANK	1	22	Insert zero
BLANK	1	23	Insert zero
BLANK	1	24	Insert zero
BLANK	1	25	Insert zero
BLANK	1	26	Insert zero
BLANK	1	27	Insert zero

BLANK	1	28	Insert zero
BLANK	1	29	Insert zero
BLANK	1	30	Insert zero Total number of slave and master segments in sliding interface definitions. =2 times the number of, sliding interfaces. NUMSG
	1	31	16,17 or 21 for force database. Unused space Additional storage required for arbitrary node and element numbering in type 6 database This number equals the sum of $(10+$ NUMNP+NEL8+NEL2+NEL4+
NUMMAT4	1	33	34
NV2D	1	39	NELT) BLANK
NARBS	1	40	Unused space
BLANK	24		

GEOMETRY DATA

The geometry section contains the nodal coordinates and the element connectivities. The ordering of the nodal points is assumed to be the same as the ordering of the nodal data in the state data that follows.

VALUE
$\mathrm{X}(3,1)$

IX4 $(5,1)$

LENGTH
NDIM*NUMNP

5*NUMSG

DESCRIPTION

Array of nodal coordinates $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$, X2,Y2,Z2,X3,Y3,Z3, ... ,Xn,Yn,Zn
Connectivity and identification number for each 3 or 4 node interface segment. For sliding interface n the identification number in $2 \mathrm{n}-1$ for the slave surface and 2 n for the master surface.

USER MATERIAL, NODE, AND ELEMENT IDENTIFICATION NUMBERS

Skip this section if NARBS (disk address 39) is zero. The user node and element numbers must be in ascending order. It is assumed that if this option is used all node and element data anywhere in the databases is in ascending order based on user numbering. The total length of the data in this database is equal to
NARBS=10+NUMNP+NEL8+NEL2+NEL4+NELT
if sequential numbering is used of the materials. For arbitrary material numbering the total length is increased by 6+NUMMAT8+NUMMAT4+NUMMAT2+NUMMATT. Material numbers are not in ascending order.

VALUE
NSORT

NSRH

NSRB

NSRS

NSRT

NSORTD 1
NSRHD 1
NSRBD 1
NSRSD 1
NSRTD
NSRMA

NSRMU

LENGTH
1

1

1111

DESCRIPTION

Pointer to arbitrary node numbers in LS-DYNA source code, a negative sign flags that arbitrary material identification numbers are also used.
Pointer to arbitrary solid element numbers in LS-DYNA source code: =NSORT+NUMNP
Pointer to arbitrary beam element numbers in LS-DYNA source code: =NSRH+NEL8
Pointer to arbitrary shell element numbers in LS-DYNA source code:
=NSRB+NEL2
Pointer to arbitrary thick shell element numbers in LS-DYNA source code:
=NSRS+NEL4
Number of nodal points
Number of 8 node solid elements
Number of 2 node beam elements
Number of 4 node shell elements
Number of 8 node thick shell elements
Pointer to an array in the LS-DYNA source code that list the material ID's in ascending order.

Pointer to an array in the LS-DYNA source code that gives the material ID's in the actual order that they are defined in the user input.

VALUE
NSRMP

NSRTM

NUMRBS 1
NMMAT
NUSERN
NUSERH
NUSERB
NUSERS
NUSERT
NORDER
NSRMU
NSRMP

LENGTH
1

1

1
1
NSORTD
NSORTH
NSORTB
NSORTS
NSORTT
NMMAT
NMMAT
NMMAT

DESCRIPTION

Pointer to an array in the LS-DYNA source code that gives the location of a member in the array originating at NSRMU for each member in the array starting at NSRMA.
Total number of materials

Total number of nodal rigid body constraint sets
Total number of materials
Array of user defined node numbers
Array of user defined solid element numbers
Array of user defined beam element numbers
Array of user defined shell element numbers
Array of user defined thick shell numbers
Ordered array of user defined material ID's
Unordered array of user material ID's
Cross reference array

STATE DATA

The state data for the interface forces have three parts:

- Time word and global data
- Node data
- Force data for sliding interface segments

LS-TAURUS and LS-POST processes the node and element data and can interpolate between states.

SEGMDATA

LENGTH
1
NGLBV
NND

ENN

DESCRIPTION
Time word
Global variables for this state
Total nodal values for state where NND $=\left(\mathrm{IT}+\mathrm{NDIM}^{*}(\mathrm{IU}+\mathrm{IV})\right) * \mathrm{NUMNP}$ DYNA3D writes 6 values per node, i.e., the three coordinates and the translational velocities. The Data is put into the database as two vectors: first $\mathrm{X}(3, \mathrm{NUMNP})$ and then V(3,NUMNP), respectively.
Data for sliding interface segments where the quantity
ENN $=(16,17$, or 21$) *$ NV2D.
The organization of the segment data is described below.

This state data is repeated for each state in the database.

For each sliding interface segment the database contains NV2D $=16,17$ or 21 values per segment. The ordering of the data follows:

1. Normal interface pressure acting on segment
2. Maximum interface shear stress acting on segment
3. Shear stress in local r-direction of segment
4. Shear stress in local s-direction of segment
5. X force at node nl of segment
6. Y force at node nl of segment
7. Z force at node n 1 of segment
8. X force at node n 2 of segment
9. Y force at node n 2 of segment

LS-DYNA DATABASE

10. Z force at node n 2 of segment
11. X force at node n 3 of segment
12. Y force at node n 3 of segment
13. Z force at node n 3 of segment
14. X force at node n 4 of segment
15. Y force at node $n 4$ of segment
16. Z force at node n 4 of segment
17. contact gap at node n 1
18. contact gap at node n 2
19. contact gap at node n3
20. contact gap at node $n 4$
21. surface energy density of segment

If contact gap at node $n 1=-1.0$, then no values are set. Similarly, if surface energy density is $=-$ 1.0 , no value is set.

If contact gap is $>=999.0$ ignore the value, this means that the interfaces are not in discernible contact.

CRACK FILE (d3crck)

The crack file is created in LS-DYNA when the Winfrith Concrete material model is used for solid elements. This model allows up to three orthogonal crack planes to develop each with an origin at the center of the element. The plane is assumed to project to the surface of the solid, and can be represented by drawing a line on any of the six solid element faces where it emerges. This cutting line can be found by considering the intersection of each plane and each solid face.

The crack file is written as a Fortran unformatted binary file, and each record in the file has a start record mark and an end record mark, each of which is 4 bytes for a single precision run and 8 bytes for a double precision run. The data is output for a state and contains:

VALUE	\#WORDS	DESCRIPTION
TIME	1	State Time word
NUMBER OF CRACKS	1	NC, Number of sets of crack data
CRACK DATA	$16 *$ NC	Sets of data for each crack

Data for each crack contains: Element ID, Flag for each crack plane, Normal vector for each crack plane and width for each crack plane.
Crack plane flags are as follows:
$0=$ no crack, $1=$ cracked, but no sustaining tensile load, $2=$ cracked but closed up, and $3=$ fully cracked with no tensile strength.
Shown below is some C coding from LS-POST to illustrate how the crack data is used and the crack lines established. The important coding is picked out in bold type. Also, after the crack data was read in, the crack flags (3 words) where stored as bits in one word. NG and MAT are the Group number for elements and the Material ID we assign in LS-POST.

```
/* elm id, 3 2bit flags 0-> 2, group no., mat no. */
int id, pflag, ng, mat;
float abc[9]; /* plane normals */
float cp[3]; /* crack width planes 1, 2 and 3 */
```

```
/* check brick element face against crack plane (nx,ny,nz) positioned
```

/* check brick element face against crack plane (nx,ny,nz) positioned

* at element center (xe,ye,ze)
* at element center (xe,ye,ze)
*/
*/
int CrackPlane(float xe, float ye, float ze, float nx, float ny, float nz,
int CrackPlane(float xe, float ye, float ze, float nx, float ny, float nz,
float xyz[]$[3]$, float $\mathrm{xs}[2]$, float $\mathrm{ys}[2]$, float $\mathrm{zs}[2]$)
float xyz[]$[3]$, float $\mathrm{xs}[2]$, float $\mathrm{ys}[2]$, float $\mathrm{zs}[2]$)
\{
\{
int i, k;
int i, k;
float $\mathbf{x 0}, \mathrm{y} 0, \mathrm{z0}, \mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$;
float $\mathbf{x 0}, \mathrm{y} 0, \mathrm{z0}, \mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$;
float xp1, yp1, zp1, xp2, yp2, zp2, pn, dn, t;

```
    float xp1, yp1, zp1, xp2, yp2, zp2, pn, dn, t;
```


LS-DYNA DATABASE

```
    k=0;
    x0 = xyz[3][0];
    y0 = xyz[3][1];
    z0 = xyz[3][2];
    for (i=0; i<4; i++) {
    /* parametric line clip algorithm */
    xp1 = x0- xe;
    yp1 = y0- ye;
    zp1 = z0-ze;
    x1 = xyz[i][0];
    y1 = xyz[i][1];
    z1 = xyz[i][2];
    xp2 = x1-x0;
    yp2 = y1 - y0;
    zp2 = z1 - z0;
    x0 = x1;
    y0 = y1;
    z0 = z1;
    pn = nx*xp1 + ny*yp1 + nz*zp1;
    dn = nx*xp2 + ny*yp2 + nz*zp2;
    if (fabs(dn) < 1.0e-15) continue;
    t= -pn / dn;
    if ( }\mathbf{t}<0.0|t>1.0) continue
    t=t-1.0;
    xs[k] = x1 + t * xp2;
        ys[k]= y1 + t * yp2;
        zs[k]= z1 + t * zp2;
        k++;
        if (k > 1) break;
    }
    return k;
}
void SetCrackWidth(float v)
{
    min_crack_width = MAX(0.0, v);
}
void DrawCracks(int ist, float *bg_color)
{
    int i, k, m, n, nc, nd, kd, ip, ic, is;
    int id, facecode;
    int etype, nface, pflag, flag;
    unsigned int j;
    float xc, yc, zc, a, b, c;
    float xyz[24][3];
    float xi[2], yi[2], zi[2];
    int shrink, count, ns[2];
    float dx, dy, dz, ds, d;
    NDCOOR *nod;
    int ng=0;
    float rd, gn, bu;
    nod = node;
```

```
nod--;
rd = 1.0 - bg_color[0];
gn = 1.0 - bg_color[1];
bu = 1.0 - bg_color[2];
glDisable(GL_LIGHTING);
glColor3f(rd, gn, bu);
glLineWidth(2.0);
GetCrackData(ist);
glBegin(GL_LINES);
nc = cstate[ist].nc;
for (n=0; n<nc; n++) {
    pflag = crack[n].pflag;
if (pflag == 0) continue;
id = crack[n].id - 1;
k = solid[id].mat & MASKBIT22;
j = active_list[k].loc;
facecode = (active_list[k].akey>>2) & FACEBITS1;
if (j < BIT30 && facecode > 0) {
    id = j;
    ng = crack[n].ng;
        if (!part[ng].active) continue;
    dx = part[ng].dscale[0];
    dy = part[ng].dscale[1];
    dz = part[ng].dscale[2];
    ds = part[ng].dscale[3];
        shrink = part[ng].shrink_mode;
    etype = (active_list[k].akey) & 0x3;
    nface = FACE_NF[etype];
        xc = yc = zc = 0.0; ic = 0;
    for (i=0; i<nface; i++) {
        for (m=0; m<4; m++) {
        nd = FACE_P[etype][i][m];
        kd = solid[id].conn[nd];
            k=4*i}+m
            if(ds == 0.0) {
                xyz[k][0] = (disp_state+kd)->xyz[0];
                xyz[k][1] = (disp_state+kd)->xyz[1];
                xyz[k][2] = (disp_state+kd)->xyz[2];
            }
            else {
                    GetScaledNodalCoord(kd, nod, disp_state, dx,dy,dz, xyz[k]);
                }
        xc += xyz[k][0];
        yc += xyz[k][1];
        zc += xyz[k][2];
            ic += 1;
        }
        }
        if (ic == 0) continue;
        d=1.0 / (float)ic; xc *= d; yc *= d; zc *= d;
        if(shrink) {
```

```
                for (i=0; i<24; i++) {
                    xyz[i][0] = xc + (xyz[i][0] - xc) * shrink_factor;
            xyz[i][1] = yc + (xyz[i][1]- yc) * shrink_factor;
            xyz[i][2] = zc + (xyz[i][2]-zc) * shrink_factor;
                }
                }
        for(i=0; i<nface; i++) {
        if (shrink || (facecode & FACE_CODE1[i])) {
            k=4 *i;
            /* for each active crack plane */
            for (ip=0,is=0,ic=0; ip<3; ip++,is+=2,ic+=3) {
                    flag = (pflag>>is) & 3;
                    if (flag == 0) continue;
                    if ((min_crack_width < 0.5 && crack[n].cp[ip] >= min_crack_width)
                    |(min_crack_width >= 0.5 && flag == 3)) {
            a=crack[n].abc[ic];
            b = crack[n].abc[ic+1];
            c= crack[n].abc[ic+2];
            count = CrackPlane(xc, yc, zc, a, b, c, &xyz[k], xi, yi, zi);
                    if (count > 1) {
                        glVertex3f(xi[0], yi[0], zi[0]);
                    glVertex3f(xi[1], yi[1], zi[1]);
                    }
            }
            }
        }
        }
    }
    }
    glEnd();
    glLineWidth(1.0);
}
```

