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Abstract 
 

The computation of fluid forces acting on a rigid or deformable structure constitutes a major problem in fluid-

structure interaction. However, the majority of numerical tests consists in using two different codes to separately 

solve pressure of the fluid and structural displacements. In this paper, a monolithic with an ALE formulation 

approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The 

projection method proposed by Gresho is used to decouple the velocity and pressure 

 

Introduction 

 
A computational procedure is developed to solve problems of viscous incompressible flows 

interacting with rigid or deformable structure. The arbitrary Lagrangian Eulerian method (ALE)  

is used to move the internal fluid nodes whereas the boundary fluid nodes move with the 

structure. The coupling of the mesh motion equations and the fluid equations is essentially done 

through contact surface boundary conditions. In continuum Mechanics, two descriptions are 

considered for the motion in a continuum media 
 

ALE Description 
 

The ALE description for incompressible viscous flows has been developed by Hughes at al [1], 

to solve free surface flows and fluid-structure interaction problems. The general kinematics 

theory developed in [1] serves as the basis of the Lagrangian-Eulerian description. For this 

purpose, the authors define three domains in space, and mappings from one domain to the other. 

The first one, called the spatial domain, is considered as the domain on which the fluid problem 

is posed. The spatial domain is generally in motion, because of moving boundaries. The second 

domain, called the material domain, is to be thought of as the domain occupied at time t=0 by the 

material particles which occupy the spatial domain at time t. The third domain, called the 

reference domain, is defined as a fixed domain throughout. From these domain descriptions, we 

can see that the Eulerian description is obtained when the spatial domain coincides with the 

reference domain, whereas the Lagrangian reference is obtained when the material domain 

coincides with the reference domain. 

Both the material and spatial domains are generally in motion with respect to the reference 

domain; it is convenient to express the material time derivative of a physical property   in the 

reference configuration. 
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where 
.

  is the material time derivative, and t,  is the time derivative when freezing coordinates 

in the reference domain, c is the convective velocity. 
meshvvc   (2) 

v  is the fluid velocity, and meshv  is the mesh velocity. In the Eulerian description, the mesh 

velocity is zero, 0meshv , whereas in the Lagrangian description vvmesh  , and .0c  

In the ALE formulation, the mesh nodes move with an arbitrary velocity. The choice of the mesh 

velocity constitutes one of the major problems with the ALE description. Different techniques 

have been developed for updating the mesh in a fluid motion, depending on the fluid domain. For 

problems defined in simple domains, the mesh velocity can be deduced through a uniform or non 

uniform distribution of the nodes along straight lines ending at the moving boundaries. 

 

Governing equations 
 

The Lagrangian formulations are frequently used to solve the structural behaviour. Indeed, 

displacements of the nodes and the elements on a Lagrangian mesh correspond to the movements 

of material. The material edges always coincide with the edges of the elements. Thus, if the 

material sharply becomes deformed, the mesh is subjected to distortions. In general, the 

structural deformations are weak so that the Lagrangian mesh remains regular and is not 

subjected to distortions. The boundary conditions are easily imposed because the edges of the 

mesh represent the limits of the physical domain during calculation. For these reasons, the 

Lagrangian formulations are much appreciated. In the Cartesian coordinate system, the 

displacement of the structure u in a domain S  (see Fig.1) is governed by: 
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with initial and boundary conditions: 

 

 Tuu DSii ,0on 


  (4) 

 

Two points of view are generally considered to describe the movement of a fluid. The first is 

Lagrangian where the speed of the mesh follows that of the fluid. The disadvantage of this 

description is to generate great distortions of mesh. The second is Eulerian and consists in 

studying the movement of the fluid in fixed positions. The domain of study is fixed and the fluid 

is updated constantly in this one. This method introduces a term of convection into the equations 

to be solved. It avoids the great distortions of mesh. However, the difficulty is deferred to the 

interface where it is difficult to represent the boundary conditions for a problem of interaction 

fluid-structure. 
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So, we made recourse to a mixed formulation. This later is the ALE method which combines at 

the same time Eulerian and Lagrangian descriptions to describe the movement of the fluid 

particles. In this framework, the velocity of the incompressible viscous fluid in a domain is 

characterized by the mass and momentum conservation laws such that: 

 

 Tv Fii ,0in0,   (5) 
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where iv  and f indicate, respectively, the flow velocity components and the fluid density. The 

term m

jv  represents the velocity of the mesh. If 0m

jv , we obtain the Eulerian formulation 

because the convective velocity of the mesh is null. If j

m

j vv  , we obtain the Lagrangian 

formulation for which the convective velocity is the fluid velocity. The quantity m

jj vv   is the 

relative velocity and the stress tensor ij  is commonly defined by: 

 

  ijijjiFij pvv   ,,  (7) 

 

where F  is the fluid dynamic viscosity. 

The momentum equation is to be solved with the initial condition and the boundary conditions: 

  Fiv  in00  (8) 

 Tvv DFii ,0on 


  (9) 

where iv


 are the imposed velocity components on DF . 

The boundary conditions on the fluid-structure interface I are given by : 

 T
t
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v I
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And 0p , on the outflow boundary 

 

 

Numerical Algorithm 
 

It is well known that the main difficulties arising in the numerical solution of the convection-

diffusion equations are due to their no-self-adjoint character. The standard Galerkin method 

leads to no physical spatial oscillations when applied to the high convective case. To preclude 

such anomalies, the most popular method being the use of upwind differencing on the convective 

term via Petrov-Galerkin methods (see, for example, Heinrich & al [2]; Heinrich and 

Zienkiewicz [3], Belytscho & al. [4]). Although theses methods are precise and stable, we will 

use a ‘split’ method which is a simple mean to obtain a robust and effective formulation. This 

time-split method decomposes the time step into two phases : 

 

– Phase 1 is a solution of the Lagrangian equations of motion (advection terms are nil) updating 

the velocity field by the effects of all forces. For the fluid, the velocity-pressure formulation of 
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the discretized problem is decoupled by the projection method (for more details, see Cho and Lee 

[5]). 

 

– Phase 2 adds advection contributions, and is required for runs that are Eulerian or contain some 

relative motion of mesh and fluid. 

 

In order to effectively solve the pressure and velocities satisfying the continuity constraint Eq.(5) 

for the phase 1, we adopt the fractional method proposed by Gresho [6]. The idea of these 

methods is to decouple the velocity v and the pressure p. These are based on a resolution in three 

steps of the Navier-Stokes equations. 

Hereafter, we describe briefly the above method in Lagrangian formulation: 

 

– Intermediate velocity. The first step consists in calculating an intermediate velocity 

iv , 

solution of the Naviers-Stokes equation without taking into account the continuity constraint. 
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– Projection. As the velocity 

iv  does not yet satisfy the incompressibility condition Eq.(5), it is 

projected on a divergence free space to get an adequate approximation of the velocity. This is 

obtained from : 

i
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with 01

, n

iiv . The term p  is a pressure increment. 

The second step consists in deriving a Poisson equation for the pressure p. In fact, by taking the 

divergence of Eq.(13) and using the incompressibility condition Eq.(5), we obtain : 
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Once the corrective pressure 1 np  has been determined, the final velocity field is obtained from 

the intermediate velocity 

iv  and 
1 np : 
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– Pressure update. Since v is the physical velocity, the pressure p can be given from 
1 np . 

11   nnn ppp  (16) 

 

For the phase 2, we used a first order Godunov method : the Donor Cell (see Benson [7] and 

Amsden & al. [8]). This step is bypassed for a purely Lagrangian calculation. In all other cases 

(Eulerian and ALE calculation) the relative velocity 
m

jjALE vvv   is not null, and we must 

calculate the flux of momentum between cells.  
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Numerical results 
 

To illustrate this numerical method, we study the case of a rigid structure impacting a fluid at a 

velocity of 1650mm/sec. This problem is very common in Naval industry is called slamming. 

For a rigid structure, theoretical results are available in the literature. Time history pressure is 

plotted for both ALE formulations, using classical MAT_NULL with an equation of state, and 

MAT_ALE_INCOMPRESSIBLE with no equation of state. The problem set-up is described in 

figure1. 

We can show from figure 2, that new incompressible material generates less oscillations for 

pressure history that the classical  material MAT_NULL. It has been also observed that time step 

is higher when running the incompressible material than the class MAT_NULL material, since 

the time step only depends on the element size and the fluid velocity and not on the material 

speed of sound. 
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Figure 1.  Problem description 

 
 

Figure 2: Pressure time history for different formulations 

                      Comparison with theory 

structure 
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Conclusion 
 

This paper describes the new incompressible material that has been developed in LSDYNA code. 

This material can be used will all LSDYNA capabilities, including contact algorithms, coupling 

using the CONSTRAINED_LAGRANGE_IN_SOLID for fluid structure interaction probems. 

Users can use this material for most CFD applications for Newtonian viscous fluid for laminar 

flow. It is our goal to extend this material for flow turbulence modelling using Large eddy 

simulation (LES), a mathematical model for turbulence used in computational fluid dynamics. 
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