13. LS-DYNA Forum

October 7, 2014 in Bamberg, Germany

Anton Matzenmiller¹, <u>Georg Schwarzkopf¹</u> Gerson Meschut², Dominik Teutenberg², Mathias Bobbert²

Influences of manufacturing, process parameters and their tolerances on the crash-behavior of adhesive bonds - experimental and numerical investigation

¹Institute of Mechanics - Department of Mechanical Engineering - University of Kassel - Germany ²The Laboratory for Materials and Joining Technology - University of Paderborn - Germany

- 1. Introduction
- 2. Basic Tests
- 3. Technological Tests
- 4. Parameter Identification and validation
- 5. Component Tests and Conclusions

Introduction

Problem:

- Manufacturing and process influences emerge in automotive mass production during adhesive bonding
- Geometrical discrepancies such as different adhesive layer thicknesses and gap-fillings appear
- Significant influence on the mechanical behavior of the joints is possible
- Methods are needed to predict these effects for car crash situations

Solution:

- Extensive experimental investigation of parameters and their influences on mechanical behavior of adhesive joints
- Parameter identification and material modelling for different parameter combination on basic tests
- Validation on technological speciments
- Sensitivity analysis of parameters on components for validation of the computation method

Outline

- 1. Introduction
- 2. Basic Tests
- 3. Technological Tests
- 4. Parameter Identification and validation
- 5. Component Tests and Conclusions

Basic Tests

Specimen Geometry:

Testing Parameter:

Adhesive layer thicknesses: Testing rates: Normal/ shear strain:

Testing rate:

Measurement and Control technique:

Quasi-static

- Local controlled/ measured
- Local extensometer

Crash

- Global machine speed controlled
- Local measurement
- High speed cam

0.15 mm, 0.30 mm, 0.60 mm and 1.00 mm 0.002 1/s, 0.02 1/s, 50 1/s, 1000 1/s $\varepsilon = \ln(1 + \frac{u}{d_k}); \gamma = \arctan(\frac{v}{d_k})$ $\dot{\varepsilon}_t = \frac{\dot{u}}{d_k}; \dot{\gamma}_t = \frac{\dot{v}}{d_k}$

Basic Tests

Butt Joint Specimen (BJS) and Thick Adhered Shear Specimen (TASS)

Effect of the layer thickness on the mechanical behavior under normal and shear loading at quasi static testing rate

Basic Tests

Butt Joint Specimen (BJS) and Thick Adhered Shear Specimen (TASS)

Effect of the testing rate on the mechanical behavior under normal and shear loading at quasi static testing rate

Outline

- 1. Introduction
- 2. Basic Tests
- 3. Technological Tests
- 4. Parameter Identification and validation
- 5. Component Tests and Conclusions

Technological Tests

Specimen Geometry:

Testing Parameter:

Adhesive layer thicknesses:

Testing rates:

Testing rate:

Substrates:

Measurement and Control technique:

Quasi-static

- Global machine speed controlled
- Local measurement with optical system

0.15 mm, 0.30 mm, 0.60 mm and 1.00 mm 0.002 1/s, 0.02 1/s, 50 1/s, 1000 1/s $\dot{\varepsilon}_t = \frac{\dot{u}}{d_k}; \dot{\gamma}_t = \frac{\dot{v}}{d_k}$ H 340 LAD (1.5mm); DP 1000 (1.2mm); EN AW 5182 (1.5mm)

Technological Tests

Peel Specimen

Effect of gapgilling and substrate on the mechanical behavior under peel loading at quasi static testing rate

Outline

- 1. Introduction
- 2. Basic Tests
- 3. Technological Tests
- 4. Parameter Identification and validation
- 5. Component Tests and Conclusions

Parameter Identification

Parameter Identification

- Identification of a set of parameter at a layer thickness of 0.3 mm (TASS and BJS)
- Calculation for other layer thicknesses (TASS and BJS)
- Good prediction for 0.3 mm, overvalue of the strain with increasing layer thickness

Parameter Identification

- Identification of a set of parameter at a layer thickness of 0.3 mm (TASS and BJS)
- Identification of new damage parameters for each layer thickness
- Good prediction for 0.3 mm, 0.6 mm and 1.00 mm

- 1. Introduction
- 2. Basic Tests
- 3. Technological Tests
- 4. Parameter Identification and validation
- 5. Component Tests and Conclusions

Structure of Component Specimen

Sensitivity Analysis

Parameters	Start value	Variation range and distribution	setting	remark
Adherent Thickness	0.3 mm	0,1 – 1,0 mm each 0,1 mm	PreProcessor	The adherent thickness of two upper overlaps is varied simultaneously
Gap filling	100 %	0% – 100% four steps	PreProcessor	Delete of elements in the gap
Yield stress of steel	<i>R_{p0,2}=</i> 380 Мра	±20 MPa each 10 MPa	Define as variable	Yield stress of steel is varied
Position of spot welds	Accordingly to experiment	±5 mm	Node position define as variable	The position of two upper and two lower spot welds is varied

Setting of adherent thickness

Settign of gapfilling

Settign of welding points position

Sensitivity Analysis

SOBOL Sensitivities

Die Universität der Informationsgesellschaft

A'T

Conclusions

- The influence of the layer thickness on the mechanical behavior of the adhesive layer can be determined by basic specimen types like TASS or BJS
- The influence of parameters gap filling, strain rate and substrate material are shown
- The results of the basic tests can be used to identify a set of parameters in dependence of the layer thickness
- Sensitivity and stochastic analysis with more complex specimen types are possible
- Adhesive layer geometry (thickness + gap filling) has large effect on mechanical behavior of adhesive bonded joints

