

Experimental and Numerical Analysis of a Glass Fiber Reinforced Plastic

13. LS-DYNA Forum, Bamberg, 2014-10-08

<u>Rebecca Jennrich¹</u>, Manuel Roth¹, Stefan Kolling¹, Christian Liebold², Gerhard Weber³

¹ IMM, ² Dynamore GmbH, ³ Celanese GmbH

Contents

- Project Overview
- Material Testing
- Component Testing
- Material Cards
 - MAT024
 - MAT157
- Component Simulation
- Mapping Fiber Orientation
- Summary

Project Overview

- Purpose: Generating a suitable model for simulating a specific reinforced plastic (PBT with 20 percent by weight of glass fibers) including failure
 - Conducting material tests
 - Generating material cards
 - Conducting component tests
 - Adding material failure
 - Mapping fiber orientation
 - Comparing different setups

Material Testing

- Three-point bending tests using 4a impetus and Instron 5566
- Strain rates between 0.01/s and 50/s
- Specimens are sawed out of injection molded plates

4a impetus pendulum with the three-point bending setup.

Testing speed	Specimen length [mm]
50 mm/min	60
1.0 m/s	60
2.5 m/s	50
4.0 m/s	40

Three-point bending specimens of different lengths.

Material Testing quasi-static

Institute of Mechanics and Materials

Material Testing parallel

INSTITUTE OF Mechanics and Materials

Material Testing perpendicular

INSTITUTE OF Mechanics and Materials

13. LS-DYNA Forum, Bamberg, 2014-10-08

Model of the component used for filling simulation.

13. LS-DYNA Forum, Bamberg, 2014-10-08

Component Testing: Nutini Box

- Injection molded stackable box under impact loading
- Quasi-static impact tests using Instron 5566 \triangleright
- Dynamic impact tests using Instron CEAST 9350
- Testing velocities:
 - 5 mm/min and 50 mm/min quasi-static
 - 1 m/s, 3 m/s and 5 m/s dynamic

impact Component used for component tests.

IMM Institute of Mechanics and Materials

Component Testing

INSTITUTE OF Mechanics and Materials

Material Cards – MAT024

- Linear elastic, isotropic viscoplastic model
- Separate material cards for parallel and perpendicular orientation
 - Generated by optimizing material parameters to fit the three-point bending test curves
- Average card for quick and easy simulation
 - Both elastic modulus and load curves are averaged

Material Cards – MAT157

- > Anisotropic elastic, anisotropic viscoplastic model
- R values are optimized to fit the threepoint bending force-displacement curves parallel and perpendicular using the same card
- Orthotropic elasticity is realized by filling the constitutive matrix
 - E_a parallel elastic modulus
 - E_b = E_c perpendicular elastic modulus
 - G_{bc}, G_{ac} and G_{ba} are shear moduli
 - $V_{bc} = v_{ac} = v_{ba}$ Poisson's ratio

$$\frac{v_{ab}}{E_a} = \frac{v_{ba}}{E_b}, \frac{v_{ca}}{E_c} = \frac{v_{ac}}{E_a}, \frac{v_{cb}}{E_c} = \frac{v_{bc}}{E_b}$$

Constitutive matrix used in MAT157 [2].

Material Cards - MAT157 quasi-static

INSTITUTE OF Mechanics and Materials

Material Cards - MAT157 all velocities

INSTITUTE OF Mechanics and Materials

Component Simulation

- One layer of 3 mm shell elements
- Element formulation 2 (Belytschko-Tsay)
- Thickness differs throughout the model (1.0 mm – 2.2 mm)
- Element orientation is assigned via ELEMENT_SHELL_BETA
- The impactor and bearing are MAT_RIGID
- The impactor moves with an initial velocity between 1 m/s and 5 m/s and a mass between 5.5 kg and 31 kg

Mapping Fiber Orientation

- Average fiber orientation from filling simulation is mapped onto an FE model using 4a fibermap
- A specific orientation is assigned to each element by ELEMENT_SHELL_BETA

Part of the component's bottom with fiber orientations (Moldflow).

Part of the component's bottom with mapped element orientations.

IMM Institute of Mechanics and Materials

Component Simulation 1 m/s

INSTITUTE OF Mechanics and Materials

Component Simulation 1 m/s

INSTITUTE OF Mechanics and Materials

Component Simulation 1 m/s

INSTITUTE OF Mechanics and Materials

Summary

- The averaged MAT024 material model is sufficient for simulating deformation behavior without considering fiber orientation in this case
- ➢ For fully anisotropic simulation MAT157 can be used effectively
 - A model with mapped fiber orientation provides superior results
- Failure prediction is the weakest point in the simulation of reinforced plastics so far
 - The failure criterion must include the anisotropic material behavior like suggested by Vogler [3]
- As a workaround anisotropic failure will be attempted by layering MAT157 with MAT054 as proposed by Schöpfer in [4]

Literature

- [1] M. Nutini, M. Vitali: Simulating anisotropy with Ls-dyna in glassreinforced, polypropylene-based components. 2010.
- > [2] LS-DYNA User's Manual
- [3] M. Vogler, J. Schöpfer, S. Kolling, S. Mönnich, R. Glöckner: Short Fiber Reinforced Polymers: Part II - Anisotropic Extensions of the SAMP-Model. 11th LS-DYNA Forum, 2012.
- [4] J. Schöpfer: Spritzgussbauteile aus kurzfaserverstärkten Kunststoffen: Methoden der Charakterisierung und Modellierung zur nichtlinearen Simulation von statischen und crashrelevanten Lastfällen. 2011.

Backup: Component Testing

INSTITUTE OF Mechanics and Materials

13. LS-DYNA Forum, Bamberg, 2014-10-08