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1 Introduction and Problem Description 

Human body modeling has become very important in the automotive industry within the last couple of 
years. One issue with human models is that most of the well-known models, like for instance the 
THUMSTM models (Toyota Motor Corporation [1]-[3]) or the GHBMC models [4] are only available in 
standardized sizes and postures, e.g. 50/95%ile male, 5%ile female or 6 year-old child among others. 
However, real human bodies vary in size, geometry and stiffness distribution (cf. Figure 1). Therefore, 
worst-case scenarios are often aspired, where the size and shape of the human body is chosen, such 
that the model behavior in a crash test scenario leads to extreme responses in terms of injury criteria 
or the interaction with the vehicle. These worst-case geometries of the human body are usually 
obtained by using different body sizes (e.g. 6 year-old child, 5%ile female or 95%ile male). However 
the shape of the body also has a tremendous influence and is hardly accounted for. Examples for 
different body shapes are for instance skinny or obese shapes or changes due to ageing effects. 
Since the worst-case geometries are not known in advance, various simulations have to be performed 
for each crash test scenario to study the behavior of different body shapes. This of course requires a 
fast and reliable method for modifying the human body model, according to specific parameters to 
modify e.g. the shape of the thorax or the abdomen, the size of the extremities or the posture of the 
human body.  
This paper describes a method, where the shape of the human body can easily be modified using 
specific parameters or the motion of control points. The shape of the body – as described by the nodal 
coordinates of the FE mesh – is then obtained by a non-linear, multi-step interpolation approach of the 
remaining model nodes.  
Examples will be demonstrated using the THUMSTM human body, developed by Toyota Motor 
Corporation and Toyota Central R&D Labs Inc. approximately since 2000. The THUMSTM represents a 
model of the human body which is primarily used in automotive crash test scenarios. Further 
information can be found in the references [1]-[3]. 
 

 
 

Figure 1: Multiple shapes of the human body (reprin ted from B. Allen et al., The space of human body 
shapes: Reconstruction and parameterization from ra nge scans, University of Washington, 2003) 

1.1 Problem Description 

Multiple reasons for the need to change the body shape are possible, like the fitness level of the 
subject, the general size or changes related to ageing, where the latter case should be focused on in 
this paper. Increasing age especially leads to a change of the thoracic geometry. This mainly includes 
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the increase of the rib inclination angle or the curvature of the spine. The change of the rib angle leads 
to an increased depth of the thorax in the anterior-posterior direction together with a changing 
mechanical behavior of the rib cage (cf. Figure 2). In case of a frontal impact, the ribs in the younger 
ribcage will mainly rotate around the spine connection due to the steep rib angle, while the older rib 
cage will sustain increased straining of the ribs and thus an increased probability for possible rib 
fractures is present. 
The evaluation of the CT scan database led to the insight that the geometry of the current THUMS 3 
models represents a rather young individual and a geometrical adaptation of the full model is 
necessary to represent the older population. Note that a crucial requirement for any geometric 
modification procedure is that the model and mesh quality after such an adaptation process has to be 
in a good condition for the actual crash phase. 

         
 

Figure 2: (left) comparison of a "young" rib cage a nd an "old" rib cage, (right) different load distri bution, 
depending on the inclination angle in a frontal imp act situation 

1.2 Data Capturing and Geometric Interpolation 

Data from CT scans cannot be directly used in finite element analyses. Either three dimensional 
volumes have to be generated and correspondingly meshed to obtain a new FE model or the 
geometry of an available human model has to be adapted, based on the CT scan geometry. 
Especially the latter cased requires a parameterization of the CT thorax geometry. This can be 
achieved in terms of anatomical landmarks or control points, which are distributed over the whole 
thorax geometry (rib cage, cf.  
Figure 3). A new geometry might then be obtained by defining motion vectors for the landmarks on the 
FE mesh or by mapping two different sets of landmarks onto each other, i.e. defining a relation 
between the landmarks of the CT-based geometry and of the FE mesh.  
This approach can conveniently be used for an interpolation process of the whole FE geometry, 
represented by the nodal coordinates of the mesh. The landmarks are taken as control points for the 
interpolation, where the locations are available on the initial mesh and on the new thorax. This data 
can then be used to setup an interpolation process for the remaining nodes of the surrounding flesh, 
the bones and the organs, which will be described in the following. 

          
 

Figure 3: (left) example for a specific distributio n of landmarks, (right) initial and deformed THUMS V 3 
thorax geometry (example) 
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2 Geometry Interpolation Method 

2.1 The Mathematical Problem 

For the geometrical adaptation of the mesh, we choose an interpolation method in favor of a least-
squares approximation. While in the latter approach the control points are only approximated, 
depending on the type of the least squares formulation, the interpolation method matches the control 
points exactly. Thus we seek a control-point-based interpolation 
method for multi-dimensional data with exact fit of the data points. 
Given is a set of N data points, representing the landmarks/control 
points xj, where j=1,…,N and corresponding data values f(xj). The 
interpolation function can then be written as 
 
 

 
(1) 

 
with the interpolation weights λj and the interpolation function ψj(x). 
The matching of the control points requires that the equation s(xj) = 
f(xj) is fulfilled and the evaluation of the interpolation function at the 
control points reflects the corresponding data values.  
 
Special Case Example: In case of a linear interpolation approach, the well-known NI shape functions 
used in finite element analyses or standard morphing approaches are obtained, where each point in 
space is interpolated linearly using the motion or location of the vertices of the finite element or the 
morphing box. This linear approach leads to very limited approximation possibilities and large local 
deformations cannot be realized. For this reason, FE meshes or morphing regions have to be refined 
or replaced by higher-order shape functions. 
 
Therefore, nonlinear interpolation functions are used in this case, where especially two approaches 
are considered, namely a radial basis function approach and the kriging approach, which are 
explained in more detail in the following. 

2.1.1  Radial Basis Function (RBF) Approach 

A radial basis function φ is a real-valued, radially symmetric function which only depends on the 
distance of a given point from a reference, i.e. φ(ri) ≥ 0, with rj = ||x – xj||. Therefore, ψj is replaced by 
φ(ri) in Eq. (1). Additionally, Eq. (1) is augmented by a polynomial term such that 
 
 

 
(2) 

 
where pk is chosen to be a polynomial of degree k-1 and γk are the corresponding weights. The latter, 
polynomial term ensures a positive definite matrix and thus a unique solution of the system. This 
finally leads to the symmetric linear equation system 
 
 

 
(3) 

, 
where A is a symmetric NxN matrix, containing the values of the radial basis function, computed with 
the distance of the two corresponding control points, P is a NxM matrix containing the polynomial 
extension, f is a vector containing the data values and λ and γ are the weighting-vectors. After solving 
the system, the solution can be computed using Eq. (2) for each nodal point in the FE region. 
 
Various different radial basis functions are available, where in this paper especially 4 different 
functions are considered 
 
 
 

Figure 4: interpolation of a curve 
based on 5 control points  
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 • linear RBF: � � � 
• cubic RBF: � � �� 
• “thin-plate-spline” RBF: � � �� ��� �  
• multiquadratic RBF: � � 	1 � �	��� 

(4) 

  
which are plotted in Figure 5. Subsequently, each point in the region can 
be approximated by evaluating Eq. (2). 
 
The theory and also the implementation of this approach is rather simple 
and has been realized in the programming language Python. As will be 
discussed later, the approach leads to good results for the interpolation, 
depending on the ansatz of the polynomial augmentation and shows a 
rather stable behavior. Further information can for instance be obtained 
from [5] or [6]. 
 

2.1.2 Kriging Approach 

Kriging is a geostatistical technique, based on the minimization of a Lagrangian function to compute 
the weights λj in Eq. (1). The kriging equations are based on two conditions 
 

1. minimization of the scattering of the estimation error, i.e. 
 

  (5) 
 

where s* denotes the kriging interpolation, s the real solution and Var[…] the statistical 
variance of the difference, i.e. the estimation error.  

2. match of the expected values (mean values E[…]), i.e. 
 
 ���∗���� � ������� (6) 
 

which is also denoted as unbiased condition.  
 
The latter condition (unbiased condition) performs a split of the function 
 
 ����� � ����� � ����� � ����� (7) 
 
into a drift function	�����, representing the average behavior of ����� with ���∗���� � ������� �������� � ���� and a stationary fluctuation ���� with ������� � 0. Assuming polynomial functions ����� of degree M for the drift function this finally leads to the expression 
 
 ����� � !�������,					#$%&	' � 1,… ,)

*

�+,
 (8) 

 
Using Lagrangian multipliers -� together with Eqs. (5) and (8), a Lagrangian can be formulated as 
follows 
 
 ��!, -� � ./��!� � -� 0 !������� 1 �����

*

�+,
2

3

�+,
→ )56! (9) 

 
Deriving the function w.r.t. the unknowns �!, -� finally leads to the linear equation system 
 
 

 
(10) 

 
where 8�� contains the covariance between the sample points �� and ��, while �� contains the 
covariance between the sample point �� and the evaluation point �. However, this equation system is 
not very useful since the right-hand-side also depends on the coordinates of the evaluation point and 

Figure 5: visualization o f 
different radial basis 

functions  



13. LS-DYNA Forum, Bamberg, 2014 
 

 
© 2014 Copyright by DYNAmore GmbH 

the equation system has to be assembled and solved for each evaluation point which would be 
numerically very expensive. A further rearrangement of the equation system leads to a dual 
formulation, where the kriging matrix can be setup, depending on the choice and the initial coordinates 
of the control points. The right-hand-side only depends on the current coordinates of the control points 
and thus, the equations system can be solved in advance. The remaining nodes are then computed by 
a linear combination of the unknowns �!, -�. The derivation of the method can for instance be 
reviewed in [7] or [8]. 
 

2.2 Test Example  

As a simple example to test the performance of the chosen interpolation procedures, a test box 
(Figure 6) is created, where 10 nodes on each side are fixed in space. Two nodes on the upper face 
are moved upwards in the vertical direction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of the interpolation process using kriging and the radial basis functions are depicted in 
Figure 7 and Figure 8, where in the first case a constant polynomial extension was chosen, while in 
the second case a tri-linear extension was taken (linear in each spatial direction). The kriging 
approximation is the same for both cases and shows a good shape, the cross section is maintained 
and the shape is smoothly interpolated. The quality of the approximation highly depends on the choice 
of the radial basis functions and on the order of the polynomial extension. While the shapes in the first 
case (constant extension) show a very unsuccessful deformation state, the second case (tri-linear 
extension) shows a good match for all radial basis functions. The best approximation is however 
obtained using the cubic RBF approach, and closely matches the shape of the kriging approach. 
 

 
 

Figure 7: Results of the test box deformation using  the kriging approach and the RBF approach with 
constant polynomial extension 

fixation at 
10 nodes 

fixation at 
10 nodes 

given motion at 
2 nodes 

Figure 6: Simple test box, where 20 nodes are fixed and two nodes are moved upwards.  
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Figure 8: Results of the test box deformation using  the kriging approach and the RBF approach with 

linear polynomial extension 

3 Full Thorax Interpolation 

In a first step, the whole thorax is interpolated in a single, holistic step. Landmarks, distributed on the 
rib cage, are chosen as the control points for the kriging/RBF interpolation. The destination landmarks 
are specific points on the rib cage geometry, obtained from CT scans. These landmarks are required 
to be well distributed to accurately describe the geometry of the destination thorax. For the adaptation 
of the FE model, the source landmarks have to be chosen on the FE rib cage geometry to match the 
destination landmarks as exactly as possible. The final geometry of the FE thorax heavily depends on 
the distribution and the matching of the landmarks. A bad landmark distribution or match might lead to 
strong geometric distortions, leading to a finite element mesh unusable for FE analyses. Thus, the 
choice of the landmarks is the crucial point for the full thorax interpolation process.  
The advantages of a holistic approach are obvious. Depending on the landmarks, the whole thorax is 
adapted in a single step, where the interpolation functions and weights are computed from the motion 
of the landmarks. Any other node of the thorax can then be interpolated accordingly. This leads to a 
very fast and simple approach but due to the above mentioned problems, good shaped elements are 
difficult to obtain and ensure. A similar approach was used in [9] for the evaluation of different 
vulnerable populations in crash situations. 
Figure 9 (left) shows an example landmark distribution on the bony thorax and the results of the 
interpolation of the THUMS thorax, based on the motion of the landmarks. Figure 10 illustrates some 
problems arising with this approach. Body parts can distort heavily and as a result, the FE mesh 
representation is not suitable for high-dynamic crash simulations. Another problem is the unphysical 
deformation of other body parts, which might be a side effect of badly distributed landmarks. 
As a result, holistic interpolations of the whole geometry strongly depends on the input data and is 
therefore hardly suitable for finite element analyses, due to unrealistic deformations and bad element 
shapes.  

          
 

Figure 9: (left) example landmark distribution on t he rib cage, (right) results of the holistic thorax  
interpolation with initial FE model and interpolated  thorax model 
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4 Multistep Thorax Interpolation 

For this reason, this section addresses an alternative multistep approach, where the geometry is 
adapted in multiple steps. This multistep approach is realized in terms of an input-based Python script, 
which is developed on the basis of the interpolation procedures, described earlier. 

4.1 Development of an Interpolation Tool Box 

This script is mainly based on an interpolation tool box, where various, simple and more complex 
geometric modification methods have been implemented which can optionally be combined with a 
smoothing step, based on nodal interpolations. 
 

• *MOVE - move nodes and parts 
along a displacement vector. 
Optionally, a smoothing process can 
be active for a set of (transitional) 
parts. 

• *SCALE - scale nodes and parts 
according to a reference node and 
local/global scaling factors. 
Optionally, a smoothing process can 
be active for a set of (transitional) 
parts. 

• *ALIGN/*ALIGN_CSYS - align parts 
according to the motion of two 
reference points or the motion of a 
reference coordinate system, 
respectively. The parts to be aligned 
are not distorted but are rigidly 
relocated according to the reference. 

• *KRIGING_PARTS - smooth 
(interpolate) parts with given 
boundary conditions. A pure 
smoothing step is performed, based 
on geometric changes from previous 
commands. 

• *PROJECT_NODES - nodes can be 
projected to a given (shell) base part 
(compute local coordinates and 
distance to master shell) in the non-
deformed geometry and reconstruct 
the nodal position in the deformed 
geometry. This ensures that cross 
sections are retained, even when the 

rib cross  
section not retained 

deformation of  
the cervical spine 

unrealistic  
sternum  
shape 

Figure 10: Illustration of some problems for the holistic in terpolation  
(left) cross sections are not retained and might be  heavily distorted, (center) strong distortions in the 

cervical spine area, (right) unrealistic deformatio n of parts, e.g. the sternum  

Figure 11: Batch script to adapt the thorax geometry 
using a sequence of geometric modifications  
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corresponding parts deform. 
 
These geometric modification commands can be assembled in a batch script to adapt the geometry of 
the thorax as depicted in Figure 11. This batch script is then executed using the developed Python 
script and can easily be adapted to other requirements or geometric parameterizations. 
 

4.2 Simplified Parameterization of the Thorax Adapt ation 

The adaptation process of the thorax still requires a geometric parameterization, i.e. a set of 
parameters which sufficiently describes the geometric changes. It was worked out in Section 3 that a 
parameterization using only the landmarks might be cumbersome and leads to different problems. In 
this paper, a simplified geometric parameterization is therefore used, which was derived from a CT 
scan database of various thoraces. The final shape of the rib cage is therefore given by only two 
parameters 
 

1. motion and deformation of the sternum – motion vectors are defined to prescribe the final 
shape and position of the sternum relative to the initial thorax, 
 

2. thorax width in each rib plane – to correct the lateral thorax shape, the width is given for each 
of the 10 rib planes. 
 

It is furthermore assumed that the spine shape remains constant and is not deformed in the adaptation 
process. Although a very simple parameterization, these assumptions sufficiently describe the final 
shape of the FE thorax model.  
Note that this is only an example parameterization of the geometric changes. Using the tool box, also 
other parameterizations can be easily incorporated. 
 

4.3 Multi-Step Interpolation of the whole Body 

Based on these assumptions, the final thorax geometry is obtained by 7 steps, which are described in 
the following in more detail. Generally, the assumptions are incorporated and the rest of the model is 
adapted to the new geometry using the general tool box. 
  
Step 1: Adaptation of the Sternum Position and Shap e 
 
In the first step, the shape adaptation of the sternum is defined by displacements of various nodes on 
the sternum. The nodes are moved to their new position and an interpolation step is performed for the 
whole sternum. The results are depicted in Figure 12. Additionally, a comparison of the final shape for 
a kriging and a (cubic) RBF interpolation is shown, where the results are basically identical. 
The adaptation is realized using a *MOVE command, where the 3x6=18 nodes of the sternum are 
moved to their final position. The nodes along the sternum define the correct shape while each 
displacement is tripled over the width to ensure the correct width of the sternum in each rib layer. 
 

              
 

Figure 12: Results of step 1 – adaptation of the st ernum (left) nodal motions of various sternum nodes  
and result, (right) comparison between kriging and cubic RBF interpolation 
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Step 2: Adaptation of the Rib Base 
 
In the second step, the rib base – which is basically a shell part underneath the ribs and the sternum – 
and the inner costal pleura are adapted using an interpolation procedure. This is realized using the 
command *KRIGING_PARTS, where the parts of the rib base and the inner costal pleura are 
interpolated according to the motion of the sternum and the fixed spine. The results can be reviewed 
in Figure 13, where again the initial condition and the adapted shape of the second step is depicted 
(right). Again, the kriging and the (cubic) RBF interpolation approaches lead to very similar results and 
are thus not depicted here. 

           
 

Figure 13: Results of step 2 – adaptation of the ri b base and the inner costal pleura using  
an interpolation procedure 

 
Step 3: Fix of the Thorax Width 
 
The third step corrects the width of the thorax in each rib layer. Therefore the most lateral node of 
each rib is moved to match the measured thorax width and an interpolation approach is again applied 
using the new (moved) rib nodes, the sternum and the spine as control points. This is realized using 
the *MOVE command of the tool box.  
Figure 14 shows the results of the interpolation step. 
 

         
 

Figure 14: Results of step 3 – adaptation of the ri b width (rib base) in each rib layer 

Step 4: Reconstruction of the Ribs 
 
The result of the first 3 steps is a new, adapted rib base. Step 4 performs a reconstruction of the rib 
geometry. In case of a pure interpolation approach for the whole ribs might lead to distorted ribs, 
where the rib cross sections are not retained. To avoid this, a projection-reconstruction step is 
performed using the command *PROJECT_NODES. The rib nodes are projected to the rib base, i.e. 
the closest shell element of the rib base for each rib node is evaluated and the local element 
coordinates and the distance to this shell element is computed on the initial geometry. The 
reconstruction process computes the new rib node coordinates, based on the current (deformed) rib 
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based. This approach minimizes the rib deformation and retains the cross section of each rib. The 
results are depicted in Figure 15. 
 
 

          
 

Figure 15: Results of step 4 – reconstruction of th e ribs on the new rib base 

 
Step 5: Adaptation of the thoracic Skin, Flesh and Organs 
 
Based on the new rib cage, step 5 interpolates the rest of the thorax, i.e. the flesh, skin, organs and 
the shoulder belt. Control parts are the new ribs, the sternum and the (fixed) vertebrae. An 
interpolation approach is performed for the mentioned parts using the command *KRIGING_PARTS 
and the results are depicted in Figure 16. 
 

         
 

Figure 16: Results of step 5 – adaptation of the th orax (flesh, skin, organs and shoulder belt) 

 
Step 6: Fix of the Transitions to the Head and the Abdomen 
 
Based on the new geometry of the costal pleura and the thorax flesh, the 
neck and abdomen/pelvis area are interpolated using the command 
*KRIGING_PARTS. The result is depicted in Figure 17. 
 
In summary, steps 1-6 can be performed automatically without interaction of 
the user. Different variants of the final shape can be easily accounted for by 
changing the input parameters (here: sternum position/shape and rib width). 
However, the setup of the adaptation sequence can be rather complex and 
requires some experience and trial-and-error. A different parameterization 
of the required thorax modification will most likely lead to a different 
sequence, where additional steps might be necessary and other steps have 
to be defined differently. After setting up the sequence, different variants 
can easily be incorporated.  
 
 

Figure 17: Adaptation  of the 
transitional parts  
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Step 7: Remaining Model Fixes 
 
It should be pointed out that the mesh quality after the first 6 (automatic) steps is very good and only a 
few manual fixes are still required. Therefore a 7th step is still necessary. This step mainly contains the 
following points 
 

• Merge of new nodal coordinates into the original model 
the previous 6 mesh modification steps only perform nodal relocations without changing the 
mesh connectivity. A merge of the new nodes into the original model ensures a consistent 
model after the adaptation process 

• Fix of extreme element distortions 
despite of the overall good model quality, single elements can still be heavily distorted after 
the smoothing process. These elements have to be identified and corrected manually 

• Fix of contact penetrations 
since contacts (tied and sliding contact) are not accounted for in the mesh adaption process, 
there will be most likely some contact penetrations in the new model. For stability reasons and 
to obtain a good mesh quality, these contact penetrations have to be identified and removed 
as far as possible 

 
For the present problem, only less than 5 elements had to be corrected and about 7 contact 
penetrations had to be removed, which was performed using corresponding pre-processor and thus 
could be realized in a very short time. 
The final results are depicted in Figure 18. 
 

 
 

Figure 18: Final result of the thorax modification using the THUMS V3 occupant model 

5 Summary and Outlook 

This paper presented an automatic method to adapt the geometry of human body models to other 
body shapes. A holistic and a multi-step approach were discussed and drawbacks and advantages 
have been pointed out. Basic geometric transformation routines were implemented into a toolbox, 
realized in the programming language Python and two mesh smoothing procedures were defined, 
based on kriging and radial basis function interpolation. Finally, a Python script was developed to 
realize the geometric adaptation in a batch mode, where the commands from the geometric tool box 
can be arranged in a sequence to adapt the mesh accordingly. 
Furthermore, a simplified parameterization was used for the adaptation of the thorax to the new 
geometry and the whole THUMSTM Version 3 model was adapted to the new geometry. This allows a 
very fast creation of different model variant and is thus also suitable for optimizations. 
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Future work on this approach might include a more sophisticated parameterization of the new thorax 
geometry. In this case, the final shape and position of the sternum and the chest width in each rib 
layer was used, already based on insights taken from a CT scan database. The approach might also 
be used to get more insights and define requirements on the distribution of the landmarks in a holistic 
interpolation approach, as described in Section 3. This approach represents a very simple way of 
interpolating the model geometry, without the need to define a complex sequence of different steps. 
One important feature would be the inclusion of automatic mesh checks and maybe mesh corrections 
to avoid heavily distorted elements and contact penetrations. 
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