Evaluation of the Stress and Displacement Behavior of Different LS-Dyna Element Types in Combination with Different Anti-Hourglassing Formulations and Initial Element Deformations

Markus Kober ${ }^{1}$, Arnold Kühhorn ${ }^{1}$, Benjamin Kästner ${ }^{1}$, Akin Keskin ${ }^{2}$
${ }^{1}$ Chair of Structural Mechanics and Vehicle Vibrational Technology Prof. Dr.-Ing. Arnold Kühhorn
Brandenburg University of Technology Cottbus
${ }^{2}$ Rolls-Royce plc

Outline

1. Motivation
2. Elements under consideration
3. Model and boundary conditions
4. Test results with undeformed elements
4.1 Results for displacement-based loading
4.2 Results for force-based loading
5. Test results with initially deformed elements
5.1 Results for displacement-based loading
5.2 Results for force-based loading
6. Comparison of computation time

Summary

1. Motivation

Which solid element type and which anti-hourglassing formulation is suitable for thin-walled structures?

Solid ELFORM 1, 2, -1, -2, ... T-Shell ELFORM 1
Shell ELFORM 1, 2, 16, ...

What happens for initially deformed elements?

2. Elements under consideration

Solid elements

ELFORM 1: - Underintegrated constant stress element (standard solid element)

- Fastest element in this test

ELFORM 2: - Fully integrated element (tendency for locking)

- Slower than ELFORM 1

ELFORM -1: - Similar to ELFORM 2, but accounted for poor aspect ratios on order to reduce shear locking

- Slower than ELFORM 2

ELFORM -2: - Similar to ELFORM 2, but accounted for poor aspect ratios on order to reduce shear locking

- Higher costs than for ELFORM -1 because of more accurate formulation

T-Shell elements

ELFORM 1: - Underintegrated element

- Appears to the user as 8-node brick element (but plane stress is assumed)

Shell elements

ELFORM 1: - Underintegrated element (Hughes-Liu formulation)
ELFORM 2: - Underintegrated element (Belytschko-Tsai formulation, standard shell element)
ELFORM 16: - Fully integrated element

- Higher computational costs than ELFORM 1 and 2
- Preferred for implicit calculations

For more details please refer to: Hallquist, J. O.: "LS-DYNA Theory Manual", Livermore Software Technology Corporation, 2006

3. Model and boundary conditions

Solid model

Boundary conditions:

- Node 1 and node 2 are fixed in y-direction, node 2 and node 3 are fixed in x-direction
- Lower cylinders are fixed, upper cylinder is loaded

Loading:

- Upper cylinder is loaded by a force of 0.1 N in negative z-direction or with a prescribed displacement of 0.5 mm in negative z-direction resp.

3. Model and boundary conditions

Load curve:

Time integration: All computations are done with explicit time integration (mpp solver)
Damping: Global damping of $10 \mathrm{e} 4 \mathrm{~s}^{-1}$ is applied (to achieve quasi-static solution)
Initial element deformations: All computations are done without and with initial element deformations:

Undeformed element

Initially deformed element

To achieve initial element deformations, the taper angle α of the middle elements is varied between $\alpha=0^{\circ}, \alpha=5^{\circ}$, $\alpha=10^{\circ}$ and $\alpha=20^{\circ}$.

Hourglass Control: All computations are done with HG 4, 5 and 6 with default control coefficients

4. Test results with undeformed elements

4.1 Max. bending stresses for DISPLACEMENT-BASED loading and different anti-hourglassing formulations

- Influence of hourglass control onto computed stresses only for solid ELFORM 1
- Shell elements compute more accurate results due to position of integration point

4. Test results with undeformed elements

4.1 Max. bending stresses for DISPLACEMENT-BASED loading and different anti-hourglassing formulations

Solid ELFORM 1:

- HG 4 and HG 5 cause an increase of the stiffness which results in higher stresses (especially in y-direction)
- This specific reaction can also be observed for the internal energy functions
- The decrease of the internal energy of the model without HG control results from an increase of the hourglass energy
- Without hourglassing, model with no HG control would lead to the same result like model with HG control 6

4. Test results with undeformed elements

5. Test results with initially deformed elements

Most meshes of real parts do not contain only perfectly brick-shaped elements, where all edges are perpendicular to each other.

How do such initially deformed solid elements behave in the 3 -point-bending test?

Here, variation of so-called taper angle:

5. Test results with initially deformed elements

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

5. Test results with initially d

5.1 Max. bending stresses for DISPLACEMENT-BA

change between tensile and compressive bending stresses

¢	Solid -2	Solid-1 Solid 1 Solid 2 \quad T-Shell 1
㐫 -100.0		

5. Test results with initially deformed elements

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

13

5. Test results with initially deformed elements

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

14

5. Test results with initially deformed elements

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

5. Test results with initially deformed elements

5.2 Max. displacements for FORCE-BASED loading

16

5. Test results with initially deformed elements

5.2 Max. displacements for FORCE-BASED loading

17

5. Test results with initially deformed elements

5.2 Max. displacements for FORCE-BASED loading

18

5. Test results with initially deformed elements

5.2 Max. displacements for FORCE-BASED loading

19

5. Test results with initially deformed elements

5.2 Max. displacements for FORCE-BASED loading

20

5. Test results with initially deformed elements

5.2 Max. displacements for FORCE-BASED loading

6. Comparison of computation time

- The table given below shows the total CPU times [sec] (elapsed time of d3hsp files) for all force-based calculations with a taper angle of $0^{\circ} \mathrm{deg}$ and hourglass controls 5 or 6
- Because HG6 is not implemented for shell elements, they are not listed in the second table.
- All CPU times are normalised with respect to solid ELFORM 1 (HG6).
- As expected, shell elements are much faster than solid elements (less DOF, bigger time-step size).
- Solid ELFORM 1 is the fastest solid element but ELFORM -1 is only about 30% slower
- There is nearly no difference in the computation time between hourglass control 5 and 6 in LS Dyna.

HG5:		Total CPU time [s]	Total CPU time - normalised
Solid	ELFORM -2	1917.700000	276.1
	ELFORM -1	913.280000	131.5
	ELFORM 1	677.950000	97.6
	ELFORM 2	845.120000	121.7
T-Shell	ELFORM 1	193.450000	27.8
Shell	ELFORM 1	11.157000	1.6
	ELFORM 2	11.156000	1.6
	ELFORM 16	9.031000	1.3
HG6:			
	ELFORM -2	1920.200000	Total CPU time [s]
	ELotal CPU time - normalised		
	ELFORM 1 1	915.170000	276.5
	ELFORM 2	843.550000	131.8
T-Shell	ELFORM 1	192.830000	100
			121.5

Summary

Initially undeformed elements

Displacement-based computations:

- Shell elements compute most accurate stress results due to position of integration points
- Stress results of solid ELFORM 1 strongly depend on the used hourglass control algorithm

Force-based computations:

- Only HG control 6 leads to good results in terms of stresses and displacements for solid ELFORM 1
- HG control 4 and 5 lead to too stiff structures and too low stresses for solid ELFORM 1

Initially deformed elements (taper angle $>0^{\circ}$)

Displacement-based computations:

- Results of solid ELFORM 1 are highly sensitive with respect to the taper angle
- For taper angles $>0^{\circ}$ Solid ELFORM 1 leads to good results only in combination with HG 5
- Solid ELFORM -1 leads to very good results for all taper angles

Forced-based computations:

- Solid ELFORM 1 reacts to stiff in combination with HG control 4 or 5 (good results in combination with HG 6 but only for taper angle $=0^{\circ}$)
- Solid -1 leads to good results for all taper angles in terms of stresses and displacements
- All test have also been carried out with negative taper angles and led to quantitatively similar results

Thank you for your attention!

Markus Kober ${ }^{1}$, Arnold Kühhorn ${ }^{1}$, Benjamin Kästner ${ }^{1}$, Akin Keskin ${ }^{2}$
${ }^{1}$ Chair of Structural Mechanics and Vehicle Vibrational Technology
Prof. Dr.-Ing. Arnold Kühhorn
Brandenburg University of Technology Cottbus
${ }^{2}$ Rolls-Royce plc

