Evaluation of the Stress and Displacement Behavior of Different LS-Dyna Element Types in Combination with Different Anti-Hourglassing Formulations and Initial Element Deformations

Markus Kober¹, Arnold Kühhorn¹, Benjamin Kästner¹, Akin Keskin²

¹Chair of Structural Mechanics and Vehicle Vibrational Technology Prof. Dr.-Ing. Arnold Kühhorn Brandenburg University of Technology Cottbus

² Rolls-Royce plc

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

Outline

- 1. Motivation
- 2. Elements under consideration
- 3. Model and boundary conditions
- 4. Test results with undeformed elements
 - 4.1 Results for displacement-based loading
 - 4.2 Results for force-based loading
- 5. Test results with initially deformed elements
 - 5.1 Results for displacement-based loading
 - 5.2 Results for force-based loading
- 6. Comparison of computation time

Summary

1. Motivation

2. Elements under consideration

Solid elements

ELFORM 1:	 Underintegrated constant stress element (standard solid element) Fastest element in this test
ELFORM 2:	 Fully integrated element (tendency for locking) Slower than ELFORM 1
ELFORM -1:	 Similar to ELFORM 2, but accounted for poor aspect ratios on order to reduce shear locking Slower than ELFORM 2
ELFORM -2:	 Similar to ELFORM 2, but accounted for poor aspect ratios on order to reduce shear locking Higher costs than for ELFORM -1 because of more accurate formulation
T-Shell element	S
ELFORM 1:	- Underintegrated element

- Appears to the user as 8-node brick element (but plane stress is assumed)

Shell elements

ELFORM 1:	 Underintegrated element (Hughes-Liu formulation)
ELFORM 2:	- Underintegrated element (Belytschko-Tsai formulation, standard shell element)
ELFORM 16:	 Fully integrated element Higher computational costs than ELFORM 1 and 2

- Preferred for implicit calculations

For more details please refer to: Hallquist, J. O.: "LS-DYNA Theory Manual", Livermore Software Technology Corporation, 2006

Boundary conditions:

- Node 1 and node 2 are fixed in y-direction, node 2 and node 3 are fixed in x-direction
- Lower cylinders are fixed, upper cylinder is loaded

Loading:

- Upper cylinder is loaded by a force of 0.1 N in negative z-direction or with a prescribed displacement of 0.5 mm in negative z-direction resp.

3. Model and boundary conditions

Time integration: All computations are done with explicit time integration (mpp solver)

Damping: Global damping of 10e4 s⁻¹ is applied (to achieve quasi-static solution)

Initial element deformations: All computations are done without and with initial element deformations:

Hourglass Control: All computations are done with HG 4, 5 and 6 with default control coefficients

b-tu	13. LS-DYNA Forum	M
Brandenburg University of Technology	68.10.2014 Bamberg	D

4. Test results with undeformed elements

7

- Influence of hourglass control onto computed stresses only for solid ELFORM 1

- Shell elements compute more accurate results due to position of integration point

b-tu	13. LS-DYNA Forum	M
Brandenburg University of Technology	68.10.2014 Bamberg	D

4. Test results with undeformed elements

4.1 Max. bending stresses for **DISPLACEMENT-BASED** loading and different anti-hourglassing formulations

Solid ELFORM 1:

- HG 4 and HG 5 cause an increase of the stiffness which results in higher stresses (especially in y-direction)
- This specific reaction can also be observed for the internal energy functions
- The decrease of the internal energy of the model without HG control results from an increase of the hourglass energy
- Without hourglassing, model with no HG control would lead to the same result like model with HG control 6

4. Test results with undeformed elements

Most meshes of real parts do not contain only perfectly brick-shaped elements, where all edges are perpendicular to each other.

How do such initially deformed solid elements behave in the 3-point-bending test?

 α =0°, α =5°, α =10° and α =20°

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

b-tu

University of Technology

Brandenburg

11

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

Brandenburg University of Technology

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

b-tu

University of Technology

Brandenburg

6.-8.10.2014 Bamberg

5.1 Max. bending stresses for **DISPLACEMENT-BASED** loading

b-tu

University of Technology

Brandenburg

14

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

5. Test results with initially deformed elements $_{\epsilon}$

5.1 Max. bending stresses for DISPLACEMENT-BASED loading

5.2 Max. displacements for FORCE-BASED loading

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

5.2 Max. displacements for FORCE-BASED loading

University of Technology

5.2 Max. displacements for FORCE-BASED loading

Brandenburg

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

5. Test results with initially deformed elements₄

5.2 Max. displacements for FORCE-BASED loading

^{13.} LS-DYNA Forum 6.-8.10.2014 Bamberg

5.2 Max. displacements for FORCE-BASED loading

b-tu

Brandenburg University of Technology

6.-8.10.2014 Bamberg

M

5. Test results with initially deformed elements₄

5.2 Max. displacements for FORCE-BASED loading

b-tu

Brandenburg University of Technology

21

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

6. Comparison of computation time

- The table given below shows the total CPU times [sec] (elapsed time of d3hsp files) for all force-based calculations with a taper angle of 0°deg and hourglass controls 5 or 6
- Because HG6 is not implemented for shell elements, they are not listed in the second table.
- All CPU times are normalised with respect to solid ELFORM 1 (HG6).
- As expected, shell elements are much faster than solid elements (less DOF, bigger time-step size).
- Solid ELFORM 1 is the fastest solid element but ELFORM -1 is only about 30% slower
- There is nearly no difference in the computation time between hourglass control 5 and 6 in LS Dyna.

HG5:		Total CPU time [s]	Total CPU time - normalised		
Solid	ELFORM -2	1917.700000	276.1	Normalised total CPU times for	
	ELFORM -1	913.280000	131.5	different elements and HG controls	
	ELFORM 1	677.950000	97.6	300	
	ELFORM 2	845.120000	121.7		
T-Shell	ELFORM 1	193.450000	27.8	250 –	
Shell	ELFORM 1	11.157000	1.6		
	ELFORM 2	11.156000	1.6	200 —	
	ELFORM 16	9.031000	1.3	150	
					■ HG 5
HG6:		Total CPU time [s]	Total CPU time - normalised	100	HG 6
Solid	ELFORM -2	1920.200000	276.5		
	ELFORM -1	915.170000	131.8	50 + 2 - 2 - 2 - 2	
	ELFORM 1	694.450000	100		
	ELFORM 2	843.550000	121.5		
T-Shell	ELFORM 1	192.830000	27.8	-2 -1 1 2 1 1 2 16	

Summary

Initially undeformed elements

Displacement-based computations:

- Shell elements compute most accurate stress results due to position of integration points
- Stress results of solid ELFORM 1 strongly depend on the used hourglass control algorithm

Force-based computations:

- Only HG control 6 leads to good results in terms of stresses and displacements for solid ELFORM 1
- HG control 4 and 5 lead to too stiff structures and too low stresses for solid ELFORM 1

Initially deformed elements (taper angle > 0°)

Displacement-based computations:

- Results of solid ELFORM 1 are highly sensitive with respect to the taper angle
- For taper angles > 0° Solid ELFORM 1 leads to good results only in combination with HG 5
- Solid ELFORM -1 leads to very good results for all taper angles

Forced-based computations:

- Solid ELFORM 1 reacts to stiff in combination with HG control 4 or 5 (good results in combination with HG 6 but only for taper angle =0°)
- Solid -1 leads to good results for all taper angles in terms of stresses and displacements
- All test have also been carried out with negative taper angles and led to quantitatively similar results

13. LS-DYNA Forum 6.-8.10.2014 Bamberg

Thank you for your attention!

Markus Kober¹, Arnold Kühhorn¹, Benjamin Kästner¹, Akin Keskin²

¹Chair of Structural Mechanics and Vehicle Vibrational Technology Prof. Dr.-Ing. Arnold Kühhorn Brandenburg University of Technology Cottbus

² Rolls-Royce plc

