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 Inhomogeneous microstructure and 
porosity result in a large scatter of local 
properties in a casting component 

 There are not reliable methods to predict 
damage behavior of cast components with 
stochastic aspect

 Coupling of casting simulation with crash 
simulation is a necessary step to solve the 
problem

 The approach used in this work:

 characterization of influence of 
porosity and triaxiality

 development of material models 

 modeling of influence of pore 
morphology at different loadings

Introduction
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Engineering stress vs. strain curves for different positions
Aluminum die cast alloy Castasil®-37 (AlSi9Mn)
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 RVE models:

 Periodic boundary conditions

 Controlling stress triaxiality

 RVE size: 1mm*1mm*1mm

Element edge length: 0.02mm

Element number: 50*50*50

 Calculated relationships between

 E,  and porosity

 y and porosity

 f and porosity

(matrix damage)

Cell model simulation
One pore in RVE
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Cell model simulation
Multi pores in RVE

 RVE models:

 Periodic boundary 
conditions

 Controlling stress 
triaxiality

 Damage criterion: 
triaxiality-dependent 
damage strains for 
matriax

 Calculated results about

 effect of pore 
morphology on 
damage (f)

 Interaction between 
porosity and triaxiality
concerning damage 

Porosity= 3% Uniaxial tension
e=0.034

Biaxial tension
e=0.035

Shear
e=0.053
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 Three pore morphologies 
(840 elements in specimen center)

 M1: 
30*80%+30*20%+600*2%+180*0%

 M2: 50*80%+100*2%+690*0%

 M3: 200*20%+100*2%+540*0%

 Ref: Homogeneous pore
distribution 840*5%

 Material model

 User model

 Loading

 Tension, compression

 Shear tension (=0°, 45°)

 Punch

M1

Modeling of different pore morphologies (f=5%)
under different loadings 

M2 M3

Tension

Shear tension

Casting simulation (stochastic)
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 Simulation of 
3+1 assumed pore 
morphologies

 Comparison with 
five shear tension 
tests

 Scatter in 
simulation is 
similar to that in 
experiment

Modeling of effect of pore morphologies (f=5%)
under shear tension (=0)
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 Simulation of 
3+1 assumed pore 
morphologies

 Comparison with 
five tension tests

 Scatter in 
simulation is 
smaller than in 
experiment

 Modeling of pore 
morphologies 
scanned by CT is 
necessary

Modeling of effect of pore morphologies (f=5%)
under uniaxial tension
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 Simulation of 
3+1 assumed pore 
morphologies

 Comparison with 
five punch tests

 Scatter in 
simulation is 
similar to that in 
experiment

Modeling of effect of pore morphologies (f=5%)
under biaxial tension (punch tests)
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Compression tests on Y-box and simulation
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 Simulation with homogeneous porosity of 5% 

 Simulation with inhomogeneous porosity in near future 
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 Geometry difference

 Stress vs. strain curve from compression test
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Two types of bending tests on Y-box
Static loading
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 Damage begins always at the side 
“away from ingate”
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Simulation of bending tests on Y-Box
Two test set ups
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Conclusions

 The deformation and damage behavior of the casting component Y-Box 
from the aluminum alloy AlSi9Mn was characterized under different 
loading situations. A large scatter of the mechanical properties was 
determined. 

 To investigate the influence of pore morphology on the material 
properties damage modeling was performed with three methods e.g. 
RVE with a single pore and multiple pores and continuum mechanical 
simulations. 

 Material models were derived and calibrated based on the RVE 
calculations. The scatter of the material data can be predicted by using 
the approach of the continuum mechanical simulation applied in this 
work.

 The real distribution of porosity in the component will be determined by 
casting simulation and CT-measurement. The damage modeling will be 
repeated using the date for real pore morphology. 
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