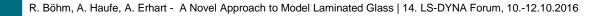

14. LS-DYNA Forum 2016

A Novel Approach to Model Laminated Glass

R. Böhm, A. Haufe, A. Erhart

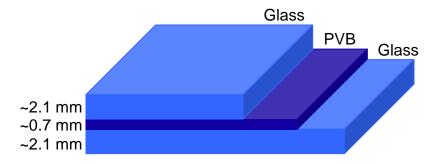

DYNAmore GmbH Stuttgart

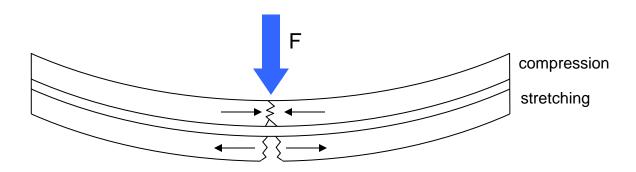
- Introduction and Motivation
- Common approach to model laminated glass
- New approach
 - Theory
 - Implementation in LS-DYNA: *MAT_280
- First simulation results

- Introduction and Motivation
- Common approach to model laminated glass
- New approach
 - Theory
 - Implementation in LS-DYNA: *MAT_280
- First simulation results

Introduction

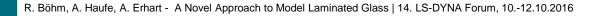
- Usage of glass in automotive industry increases: Design elements
- Mechanical behaviour of glass plays a role for the stiffness of the car
- Therefore the numerical treatment is important in crash applications

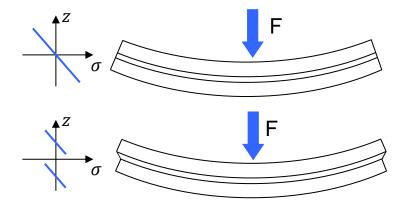


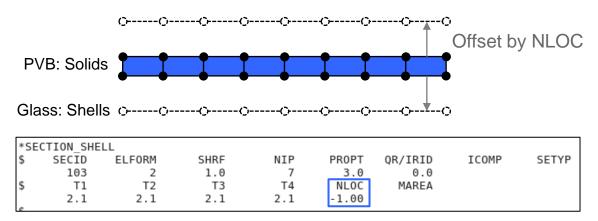


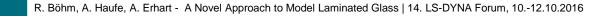
Laminated Safety Glass

- Two types of safety glass commonly used:
 - Tempered glass → side windows
 - Laminated glass → windshields, panorama sunroofs
- Laminated glass consists of 3 layers
 - 2x glass
 - PVB interlayer


- Glass fragments are bonded
 - → Difficult mechanical behaviour

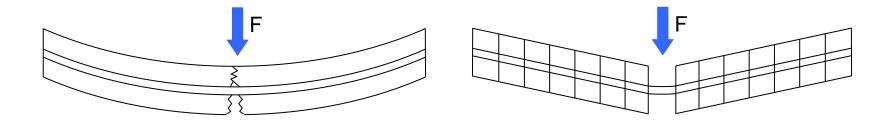

- Introduction and Motivation
- Common approach to model laminated glass
- New approach
 - Theory
 - Implementation in LS-DYNA: *MAT_280
- First simulation results




State of the Art: Discretisation

- Discretisation:
 - PVB: transverse shear deformation important
 - → solid elements
 - Glass: shell elements

- Contact between layers: Shared nodes
- Offset the glass layers by NLOC parameter



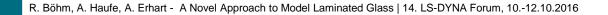
State of the Art: Material Models

- Material Models:
 - PVB: viscoelastic-plastic
 - Glass: linear-elastic with failure, e.g. MAT_24 + MAT_ADD_EROSION
- In case of failure in the glass layers, elements are deleted:
 - Only the stiffness of PVB interlayer is left
 - No residual load bearing capacity
 - Unrealistic post-breakage behaviour
 - → Currently used approaches for the glass' material model are not satisfying !

- Introduction and Motivation
- Common approach to model laminated glass

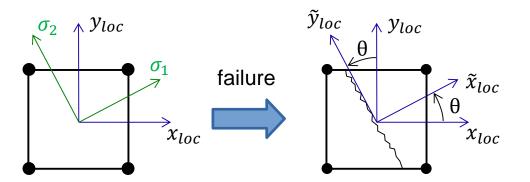
New approach

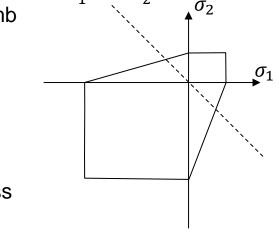
- Theory
- Implementation in LS-DYNA: *MAT_280
- First simulation results



New approach – requirements for glass material model

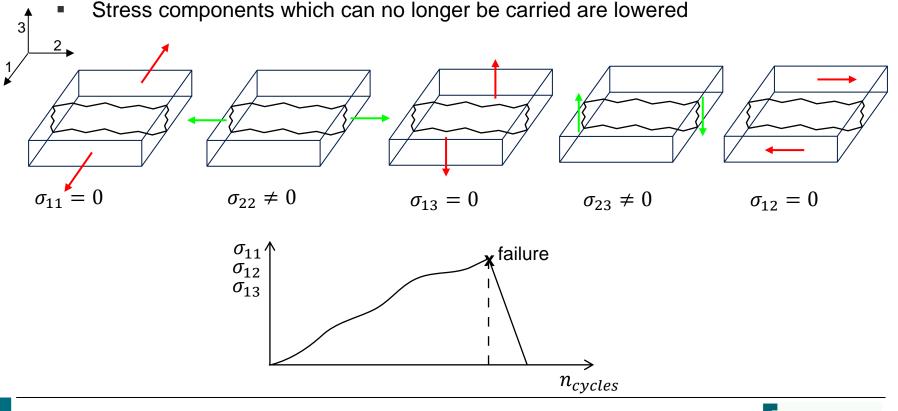
- Implementation for shell elements
- Isotropic linear elastic material law with brittle failure
- Stress based failure criteria with tension compression asymmetry
- Treatment of failure withouth deleting elements
- Crack closure and opening effects
- Further: Easy to use, low computation times, usable in crash simulations..


→ Smeared fixed crack material model



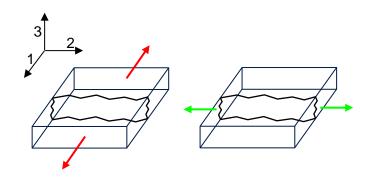
Detection of failure

- Failure criteria: stress based, e.g. simple Mohr-Coulomb
- If current stress meets criteria, decide between
 - Compression: Material is 'crumbled', no stiffness left
 - Tension: Single crack occurs
- Crack direction perpendicular to the first principal stress
- Individual coordinate systems along the crack directions are established in each 'cracked' integration point

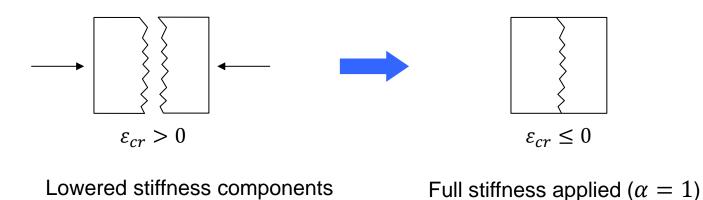

 σ_2

 σ_1

Stress Reduction

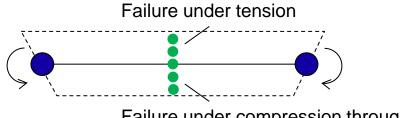

- Done directly after a crack was detected
- Stresses are rotated into crack coordinate system $\sigma_{cr} = Q \sigma Q^T$

Stiffness Calculation and Stress Update


- If a crack occured, the constitutive equation in the IP needs to be updated
- \mathbb{C} : 4th order stiffness tensor, isotropic
- \mathbb{C}^{cr} : updated stiffness tensor, orthotropic:
 - $C_{1111}^{cr} = \alpha C_{1111}$
 - $C_{2222}^{cr} = C_{2222}$
 - ... according to crack kinematics
- α depends on the crack opening:
 - $\alpha = 1$ if crack closed (full stiffness applied)
 - $\alpha < 1$ if crack open (reduced stiffness, usually $\alpha = 0$)
- Rotate \mathbb{C}^{cr} from crack to element coordinate system $C_{ijkl} = Q_{im}Q_{jn}Q_{ko}Q_{lp}C_{mnop}^{cr}$
- Update the stresses

Crack Closure Effects

- When crack is detected, a so called crack strain is initialized, two options:
 - Compute from current strain: $\varepsilon_{cr}^0 = Q_{1i}Q_{1j}\varepsilon_{ij}$
 - Initialize with 0: $\varepsilon_{cr}^0 = 0$
- Crack strain is updated in every timestep $\varepsilon_{cr}^{i+1} = \varepsilon_{cr}^{i} + Q_{1i}Q_{1j}\Delta\varepsilon_{ij}$
- If crack strain is negative, it is considered as closed



R. Böhm, A. Haufe, A. Erhart - A Novel Approach to Model Laminated Glass | 14. LS-DYNA Forum, 10.-12.10.2016


(Orthotropic)

Element failure

- If a certain number of IP in one element failed, whole element will fail
- The crack direction in the IP which failed first sets the direction for the whole element
- Crack strain is computed individually in each IP

- Failure under compression through element failure
- If failure criteria is met a second time after failure:
 - Second crack occurs
 - Orthogonal to the first crack
 - Individual crack strain for each crack → can open and close independendly

*MAT_280

Shown material model was implemented in LS-DYNA R9.0

Card 1			3		5	6	8
Variable	MID	RO	E	PR			
Туре	A8	F	F	F			
Card 2			3		5	6	8
Variable	FMOD	FT	FC				
Туре	F	F	F				
				-			
Card 3			3		5	6	8
Variable	SFSTI	SFSTR	CRIN	ECRCL	NCYCR	NIPF	
Туре	F	F	F	F	F	F	

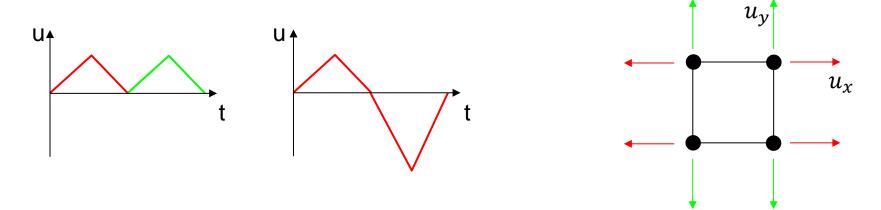
- Input Parameters:
- FMOD: Failure model (Mohr-Coulomb, Continuous Surface Cap, Comi)
- SFSTI: Stiffness scale factor in case of failure
- SFSTR: Stress scale factor in case of failure
- CRIN: Flag for crack strain initialisation
- ECRCL: Crack strain from which on the crack is considered as completely closed
- NCYCR: Number of cycles in which the stress is lowered
- NIPF: Number of failed integration points for element failure

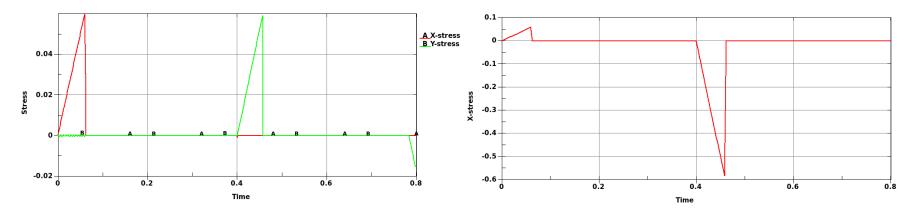
*MAT_280

Shown material model was implemented in LS-DYNA R9.0

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	Е	PR				
Туре	A8	F	F	F				
Card 2			3		5	6		8
Variable	FMOD	FT	FC					
Туре	F	F	F					
Card 3			3		5	6		8
Variable	SFSTI	SFSTR	CRIN	ECRCL	NCYCR	NIPF		
Τνρε	F	F	F	F	F	F		

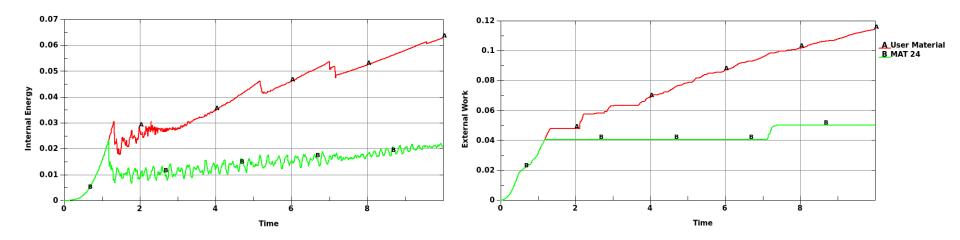
- Output variables:
- Crack Flag:
 - 1: 1 crack in element (failure under tension)
 - 2: 2 cracks in element (failure under tension)
 - -1: Failure under compression
- Crack direction: In °rad to the element coordinate system


- Introduction and Motivation
- Common approach to model laminated glass
- New approach
 - Theory
 - Implementation in LS-DYNA: *MAT_280
- First simulation results

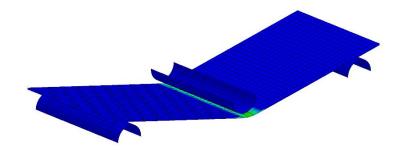


Single Element Tests

Nodal displacements:

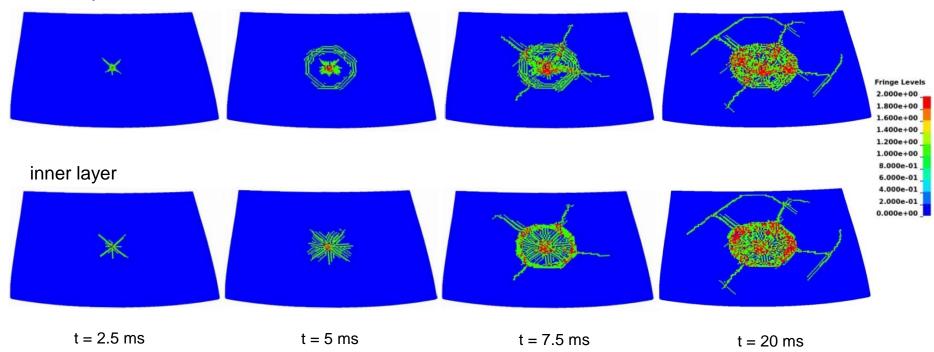


Stress responses:



3-Point-Bending

- Comparison: MAT_280 vs. MAT24+ADD_EROSION
- Different post breakage behaviour
- Energy consumption is higher after failure when using MAT_280

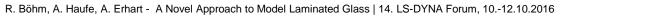


Windshield Head Impact

Head impactor on a windshield using *MAT_280 and regular mesh (grid)

outer layer

Cracks forming independendly from mesh



Conclusion

- New Approach for treatment of laminated glass
- Implemented in LS-DYNA release R9.0
- First test simulations done
- To come: use in larger models, experimental results, ...

Fin

