Composites forming simulations in LS-Dyna using the material law 249
0. Agenda

Presentation content

I. Introduction

II. Material models for composites part forming

III. Material characterization

IV. Composites forming application

V. Conclusions
I. Introduction

Faurecia: Leader in automotive equipment

- 34 Countries
- €20.7 Billion of total sales
- 103,000 Employees
- 330 Sites
- 489 Patents filed in 2015
- 6,000 Engineers and technicians
- 30 R&D centers
- 610 Programs in development

#1 Worldwide
#3 Worldwide
#1 Worldwide
#1 Worldwide
#1 Worldwide
I. Introduction

Faurecia Composite Technologies

- **350 Employees**
 - Structural parts
 - Body in white, beam reinforcements
 - Crash resistance, stiffness
 - Luxury & Premium, mass market, trucks, EV

- **2 Composite plants**
 - Semi-structural parts
 - Large 3D parts, closures and panels
 - Function integration, acoustics / NVH
 - Luxury & Premium, mass market, trucks

- **3 R&D + D&D centers**
 - A Class
 - Visible parts, closures
 - Painted or exposed carbon
 - Luxury & Premium, trucks

- **3 Countries**
 - Faurecia competence center
 - Seat structures
 - Cross Car Beams
 - Heat shields
I. Introduction

Composites forming of continuous fiber plies

- Major step of two promising processes for a mass market composite parts production

<table>
<thead>
<tr>
<th>Thermoforming</th>
<th>RTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming of organsheets</td>
<td>Dry fabric preforming</td>
</tr>
</tbody>
</table>

- Advantages
 - Short cycle times
 - High repeatability allowing automation
I. Introduction

Composites forming of continuous fiber plies – Drawbacks

- **Defect intensive**
 - Fiber wrinkling
 - Inter-ply fiber wrinkling
 - Fiber thinning

 Gazo-Hanna, E. et al. (2009) in JNC 16, AMAC

- **Waste intensive**
 - Increased process and material cost
 - Complex recycling

- **Important influence on mechanical part properties**

Process simulation fundamental
II. Material models for composites part forming

Composites forming simulation: FCT- vision

- Expertise domain (physics, mathematics, IT, product, process, materials …)
 - Garbage in – garbage out
- Important number of software codes and material models on the market
 - Different levels of maturity and usability
- Main material model selection criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Kinematic draping</th>
<th>Elastic / Viscoplastic material models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Only for simple kinematics (problematic especially for complex parts)</td>
<td>Most important defects can be detected</td>
</tr>
<tr>
<td>Availability</td>
<td>CATIA, Quick-Form, etc.</td>
<td>PAM-Form, LS-Dyna, RADIOSS, etc.</td>
</tr>
<tr>
<td>Computation time</td>
<td>Very fast evaluation</td>
<td>Computational time intensive</td>
</tr>
<tr>
<td>Considered physics</td>
<td>Largely simplified physics (e.g. no thermal considerations)</td>
<td>Comprehensive process simulation possible</td>
</tr>
<tr>
<td>Material characterization</td>
<td>Some non-physical parameters</td>
<td>Some non-physical parameters</td>
</tr>
</tbody>
</table>
II. Material models for composites part forming

One-step forming

- Comparison of 2 commercial software codes: LS-Dyna (MAT 34) and RADIOSS (Mat 58)
 - Comparable results
 - However differences in the details and the usability
- Inter-ply wrinkling prediction in multi-ply simulation
II. Material models for composites part forming

Multi-stamp-forming

- Material model behavior in complex situations
 - Numerical instabilities due to not considered physical phenomena
 - Convergence errors
 - Reduced prediction precision
 - Important computation times
 - Superposition with a second material layer necessary to consider matrix behavior

- LS-Dyna Mat 249:
 - Recently developed material law
 - Specifically developed for composite part forming
 - Independent fiber - matrix behavior in the same material law
III. Material characterization

Material characterization

- Specific characterizations of the matrix and the fiber material

- Friction coefficients
 - Consideration in the *CONTACT Keyword
 - Traction of a mass over the composite ply
 - Differentiation between
 - Ply - ply contact
 - Ply - mold contact
 - Non-negligible influence on the material forming behavior

- Fiber material parameters of Mat 249 – direct characterization
 - Young modulus → E.g.: Tensile test, bias extension test
 - Shear behavior → E.g.: Bias extension test, picture frame test
III. Material characterization

Material characterization – Non-physical input values

- Direct input into material law not possible
- Mat 249: Bending stiffness
 - Can be determined by the local integration point position
- Characterization approach
 - Numerical reconstruction of the DIN cantilever test
 - Optimization cycle in LS-Opt

Integration point position variation
Dr. T. Klöppel, 2016, New material model *MAT_249 for thermoplastic pre-pregs and dry fabrics

Specific characterization protocols for non-physical parameters
IV. Composites forming application

Dry fabric preforming with the Fraunhofer ICT

- **Preform stamping for the RTM process**
 - High influence on local permeabilities and thickness (dry zones, wrinkles…)
 - Mandatory to consider during RTM filling simulation

- **3 Materials**
 - Plain weave, Twill (2/2), NCF
 - Different forming behavior

- **Forming press at the Fraunhofer ICT**
 - 3 independent forming stamps
 - Multiple possible gripper positions
 - Optimization of the forming kinematics
 - Wrinkles elimination

Independent forming stamps
Prof. F. Henning et al., 1st International Composites Congress (ICC) - 2015
“Cost-efficient Preforming as leading process step to achieve a holistic and profitable RTM product development”
IV. Composites forming application

Dry fabrics forming simulation

- High grade of correlation for all three materials
- Independent of the forming sequence
- Detection of wrinkles for the interior plies
 - Detection very difficult for the real part

Forming with Mat 249
IV. Composites forming application

Dry fabrics forming sequence optimization

- **Simulation driven optimization**
 - Manual variation of the stamp displacement curves
 - Manual analysis of the wrinkle number and location for all plies
 - All wrinkles eliminated for two materials but not the NCF fiber material

- **Validation of the simulation results by physical trials**

Wrinkles elimination via simulation / optimization reduces part development cost and time
V. Conclusions

Outlook

- Important influence of forming sequence on final mechanical part properties

 Mechanical part simulation using mapping of fiber orientations and wrinkles

- Application on other formed composite parts
 - One-shot process for visible parts
V. Conclusions

Take-away

- Simulation and optimization: a key to reduce Cost, Weight & Time
- Forming is an essential part of the complete composites product-process chain
 - Application in main automotive processes
 - RTM – preforming of dry fabrics
 - Thermoforming of organosheets
 - Managing the forming kinematics
 - Guarantee and optimize the mechanical properties of the final part
 - Enable advanced process combinations
- Main reasons for a successful industrial application of a material model
 - Exhaustive representation of all main defects and physics
 - Reasonable computational effort
 - Easy material law characterization and availability of characterization protocols
Technical perfection; automotive passion