

Analyse der zu einer verzögerten Rissbildung führenden umformtechnischen Randbedingungen

Matti Teschner, Matthias Schneider, Dr. Manuel Otto

Bamberg, 10. Oktober 2016

Agenda

5 Motivation

- 5 Versuchsdaten
- Simulationsmodell und Versuchsmatrix
- 5 Kriterium zur Vorhersage verzögerter Rissbildung
- Untersuchung eines Sitz-Lehnen-Seitenteils
- Fazit und Ausblick

Verzögerte Rissbildung

Mikrostruktur

Wasserstoff

5 Problemstellung

- Kritische Umformgrade bei Tiefziehteilen > verzögerte Rissbildung möglich
- 🔨 Besonders hochfeste Stähle betroffen > schränkt Einsatzbereich ein 🛽 spannungen
- Ursache: kritische Kombination aus Umformgrad, anliegender Zugspannung und diffusiblen Wasserstoffanteil

ว Ziel

Kriterium zur Vorhersage von verzögerter Rissbildung bei hohen Umformgraden am Beispiel eines hochfesten Stahls

Vorgehensweise

- Experimentelle und numerische Versuchsreihen
- Ableiten von Zusammenhängen > Entwicklung eines Kriteriums zur Vorhersage

Versuchsdaten

🗇 Übersicht der experimentellen Versuchsreihen

- Tiefziehen von Rundnäpfen: hochfester Stahl, Ø 50 mm und 1,0 mm Blechdicke
- Vintersuchung von 3 Schnittkantenqualitäten: gute und schlechte Laserkante sowie gestanzt

Versuchsdaten

🗇 Übersicht der experimentellen Versuchsreihen

- Tiefziehen von Rundnäpfen: hochfester Stahl, Ø 50 mm und 1,0 mm Blechdicke
- Vintersuchung von 3 Schnittkantenqualitäten: gute und schlechte Laserkante sowie gestanzt

- 6-Parameter-Modell nach Barlat f
 ür Solids
- Vorgegebene Parameterermittlung > falsches Fließverhalten

Simulationsgestützte Parameterermittlung

Parameterermittlung

Schritt 1: Überprüfung der Parameter durch virtuelle Zugversuche
 keine Übereinstimmung

Parameterermittlung

Schritt 1: Überprüfung der Parameter durch virtuelle Zugversuche
 keine Übereinstimmung

- Schritt 2: Inverse Parametrisierung durch gezielte Variation der Parameter
 - 8 Iterationen bis ausreichende Übereinstimmung

Sewertung der Simulationsergebnisse

- Abgleich der globalen
 Dehnungsverteilung mit ARGUS
- Zusätzlicher Abgleich durch Messung mit Bügelmessschraube im Randbereich

Abweichung der Wanddicke

Versuchsmatrix

Erstellung einer virtuellen Versuchsmatrix unter Berücksichtigung von

- 2 Blechdicke 1,0 und 1,5 mm
- **3** Flanschbreiten 0, 1 und 2 mm
- 4 Napfdurchmesser 33, 50, 75 und 100 mm
- 5 Ziehverhältnisse

2,00, 2,05, 2,10, 2,15 und 2,20

Automatisierung

- Aufbau einer Ordnerstruktur entsprechend der Versuchsmatrix
- Automatischer Start und Überwachung der Simulationen durch Batch-Programme

= 120 Umformsimulationen

> 1 Doppelklick = 120 Napfsimulationen

Analyse der zu einer verzögerten Rissbildung führenden umformtechnischen Randbedingungen

Kriterium zur Vorhersage verzögerter Rissbildung

Sergleich der experimentellen u. numerischen Versuche

- Risse treten hauptsächlich quer zur WR auf
- In dem Bereich des Randes treten die größten Umformgrade auf
- Zugspannungen nicht maximal in dem Bereich > kritische Zugspannungs-Dehnungskombinationen am Rand führen zur Rissbildung

Automatisierung der Auswertung

- LS-PrePost Makros zur Ausgabe der Zugspannungs- und Dehnungswerte der 12 Elementringe über die Dicke am Rand
- Datenimport durch VBA-Makro > Sortierung der Daten
- Mittelwertbildung der 40 größten Dehnungswerte und der zugehörigen Zugspannungswerte
 Dehnung

Kurvenverlauf der Zugspannungs-Dehnungskombinationen durch 12 Elementringe über den Rand > Darstellung im Diagramm

Zugspannungs-Dehnungsverlauf am Rand f ür 50 mm Napfdurchmesser

Dehnungen und Zugspannungen nehmen mit Ziehverhältnis zu

Zugspannungs-Dehnungsverläufe am Rand für 50 mm Napfdurchmesser

Solution Anwendung auf andere Napfdurchmesser

Theoretisch auch auf kleinere und größere Napfdurchmesser anwendbar

Weitere Napfversuche sinnvoll

Solution Anwendung auf andere Napfdurchmesser

Theoretisch auch auf kleinere und größere Napfdurchmesser anwendbar

Untersuchung eines Sitz-Lehnen-Seitenteiles

für die Werkzeugbereitstellung

Riss bei Sitz-Lehnen-Seitenteil

Prüfung der Anwendbarkeit

Untersuchung eines Sitz-Lehnen-Seitenteiles

Solution Anpassung der Platinen-Geometrie

mit großer Auswirkung

Plastische Dehnung

Geringe Anpassung im kritischen Bereich

0.35

0.45

0.55

0,65

Dehnung [-]

0.75

0,85

0.2

0,0 0.25

Zugspannungs-Dehnungskombinationen vom Rand deutlich im unkritischen Bereich **5**

Dehnung [-]

für die Werkzeugbereitstellung

0.95

Fazit und Ausblick

5 Fazit

- Signifikanz des Schnittkanteneinflusses experimentell bestätigt
- Aufbau eines geeigneten Simulationsmodells > Erarbeitung einer virtuellen Versuchsmatrix > Automatisierung von Start und Auswertung
- Ableiten einer Grenzkurve > Vorhersage von verzögerten Rissen bei kritischen Spannungs-Dehnungskombinationen

Ausblick

- Erweiterung der experimentellen Versuchsdaten um große und kleine Näpfe
- Validierung durch weitere Bauteile
- Messung der diffusiblen Wasserstoffmenge

Ein Unternehmen der Salzgitter Gruppe

Danke für Ihre Aufmerksamkeit!