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Introduction

■ Motivated by the need to model pressure-based sensor 

systems designed to detect collisions with pedestrians

■ Pressure-based sensor system consists of

■ Air filled silicone tube embedded in front bumper foam

■ Pressure sensors located at tube ends to detect collision and 

activate protective systems

Bumper shell

Bumper foam

Frame

Silicone tube



Introduction, contd.

■ Two new keywords:

■ *DEFINE_PRESSURE_TUBE

■ *DATABASE_PRTUBE

■ Still in experimental/development stage

■ Currently undergoing full-scale testing

■ Models pressure waves in a (closed) gas filled tube

■ Uses tubular beam elements

■ Approximation of 1D compressible Euler equations

■ Uses variation in tube cross section area over time

■ Uncoupled from tube deformation

■ Output through “binout” or “prtube” ascii-file



Keyword input/output

■ *DEFINE_PRESSURE_TUBE

■ PID: Tube consists of all beam elements in this part. Must be a unique PID for each card.

■ WS: Wave propagation speed

■ PR: Initial gas pressure



Keyword input/output

■ *DEFINE_PRESSURE_TUBE

■ PID: Tube consists of all beam elements in this part. Must be a unique PID for each card.

■ WS: Wave propagation speed

■ PR: Initial gas pressure

■ *DATABASE_PRTUBE

■ Cross section area

■ Pressure

■ Velocity

■ Density (currently not independent variable)



Keyword input/output, contd.

■ *SECTION_BEAM

■ Only ELFORM=1,4,5,11 with CST=1, i.e. hollow circular beams

■ Initial tube area set to inner beam area

■ Geometric constraints

■ Each set of joint beam elements in a part will model a separate closed tube

■ Different parts used in *DEFINE_PRESSURE_TUBE cards may not share beam nodes

■ No junctions allowed

■ MPP

■ All elements in a part referenced by *DEFINE_PRESSURE_TUBE will be on same processor

■ Recommended to only have beam elements in such parts



Euler equations

■ 1D compressible Euler equations

■ Inviscid ideal gas in chemical and thermal equilibrium

■ Fluid density 𝜌 𝑥, 𝑡 , velocity 𝑢 𝑥, 𝑡 , energy per unit volume 𝐸(𝑥, 𝑡), and pressure 𝑝 𝑥, 𝑡

■ Conservation of mass:            
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢 = 0

■ Conservation of momentum:  
𝜕

𝜕𝑡
𝜌𝑢 +

𝜕

𝜕𝑥
𝜌𝑢2 + 𝑝 = 0

■ Conservation of energy:         
𝜕𝐸

𝜕𝑡
+

𝜕

𝜕𝑥
𝑢 𝐸 + 𝑝 = 0

where total energy = kinetic + internal: E =
1

2
𝜌𝑢2 + 𝜌𝑒

■ Equation of state: 𝑒 = 𝑒(𝑝, 𝜌)

■ Ideal gas: 𝑝 = 𝑅𝜌𝑇 and 𝑒 = 𝑐𝑣𝑇 gives the EOS e =
cvp

𝑅𝜌

■ Allows non-smooth solutions, e.g. shocks from supersonic flow
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■ Isothermal flow: 𝑝 = 𝑐0
2𝜌

■ Allows non-smooth solutions, e.g. shocks from supersonic flow



Euler equations

■ 1D compressible Euler equations

■ Inviscid ideal gas in chemical and thermal equilibrium

■ Fluid density 𝜌 𝑥, 𝑡 , velocity 𝑢 𝑥, 𝑡 , energy per unit volume 𝐸(𝑥, 𝑡), and pressure 𝑝 𝑥, 𝑡

■ Conservation of mass:            
𝜕(𝜌𝐴)

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢𝐴 = 0

■ Conservation of momentum:  
𝜕

𝜕𝑡
𝜌𝑢𝐴 +

𝜕

𝜕𝑥
𝜌𝑢2𝐴 + 𝑝𝐴 = 𝑝

𝜕𝐴

𝜕𝑥

■ Conservation of energy:         
𝜕𝐸

𝜕𝑡
+

𝜕

𝜕𝑥
𝑢 𝐸 + 𝑝 = 0

where total energy = kinetic + internal: E =
1

2
𝜌𝑢2 + 𝜌𝑒

■ Equation of state: 𝑒 = 𝑒(𝑝, 𝜌)

■ Ideal gas: 𝑝 = 𝑅𝜌𝑇 and 𝑒 = 𝑐𝑣𝑇 gives the EOS e =
cvp

𝑅𝜌

■ Isothermal flow: 𝑝 = 𝑐0
2𝜌

■ Allows non-smooth solutions, e.g. shocks from supersonic flow

■ Varying area 𝐴(𝑥, 𝑡)



Acoustic approximation

■ Euler equations with varying area 
𝜕(𝜌𝐴)

𝜕𝑡
+

𝜕

𝜕𝑥
𝜌𝑢𝐴 = 0,

𝜕

𝜕𝑡
𝜌𝑢𝐴 +

𝜕

𝜕𝑥
𝜌𝑢2𝐴 + 𝑝𝐴 = 𝑝

𝜕𝐴

𝜕𝑥

■ Variation around mean
𝜌 𝑥, 𝑡 = 𝜌0 + 𝛿𝜌 𝑥, 𝑡 ,
𝑝 𝑥, 𝑡 = 𝑝0 + 𝛿𝑝 𝑥, 𝑡 ,
𝑢(𝑥, 𝑡) = 𝑢0 + 𝛿𝑢(𝑥, 𝑡).

■ Linearization
1

𝑐0
2

𝜕 𝐴𝛿𝑝

𝜕𝑡
+ 𝜌0

𝜕 𝐴𝛿𝑢

𝜕𝑥
= −𝜌0

𝜕𝐴

𝜕𝑡
,

𝜌0

𝜕 𝐴𝛿𝑢

𝜕𝑡
+

𝜕 𝐴𝛿𝑝

𝜕𝑥
= 𝛿𝑝

𝜕𝐴

𝜕𝑥

■ Does not allow shock formation

■ Constant area gives wave equation:
1

𝑐0
2

𝜕2𝑝

𝜕𝑡2 −
𝜕2𝑝

𝜕𝑥2 = 0

■ Constant area in time gives Webster’s equation:  
1

𝑐0
2

𝜕2𝑝

𝜕𝑡2 −
𝜕

𝜕𝑥
𝑙𝑛 𝐴

𝜕𝑝

𝜕𝑥
−

𝜕2𝑝

𝜕𝑥2 = 0



Numerics

■ Continuous Galerkin on system
𝜕𝑝

𝜕𝑡
+

𝑝0

𝐴

𝜕𝑦

𝜕𝑥
+

𝜕 ln𝐴

𝜕𝑡
𝑝 = 0,

𝜕𝑦

𝜕𝑡
+

𝑐0
2

𝑝0
𝐴

𝜕𝑝

𝜕𝑥
= 0

where 𝑦 = 𝐴𝑢.

■ Semi-discretization

𝑴 𝟎
𝟎 𝑴

d

d𝑡

𝒑
𝒚 +

𝑴𝐴 𝑡 𝑝0𝑲𝐴 𝑡

𝑐0
2

𝑝0
𝑲𝐵 𝑡 𝟎

𝒑
𝒚 =

𝟎
𝟎

■ Strictly hyperbolic i.e. distinct real eigenvalues

𝜆1,2 𝑡 =
Δ𝑥

2

𝜕 ln𝐴

𝜕𝑡
±

Δ𝑥

2

𝜕 ln𝐴

𝜕𝑡

2

+ 𝑐0
2,

■ CFL condition

Δ𝑡 𝑡 <
Δ𝑥

max(𝜆1 𝑡 , 𝜆2 𝑡 )
≤

Δ𝑥

Δ𝑥
𝜕 ln𝐴
𝜕𝑡

+ 𝑐0



Numerics, contd.

■ Continuous Galerkin on system (with artificial diffusion)

𝜕𝑝

𝜕𝑡
+

𝑝0

𝐴

𝜕𝑦

𝜕𝑥
+

𝜕 ln𝐴

𝜕𝑡
𝑝 = 𝜖

𝜕2𝑝

𝜕𝑥2
,

𝜕𝑦

𝜕𝑡
+

𝑐0
2

𝑝0
𝐴

𝜕𝑝

𝜕𝑥
= 𝜖

𝜕2𝑦

𝜕𝑥2

where 𝑦 = 𝐴𝑢.

■ Semi-discretization

𝑴 𝟎
𝟎 𝑴

d

d𝑡

𝒑
𝒚 +

𝑴𝐴 𝑡 + 𝜖𝑺 𝑝0𝑲𝐴 𝑡

𝑐0
2

𝑝0
𝑲𝐵 𝑡 𝜖𝑺

𝒑
𝒚 =

𝟎
𝟎

■ Strictly hyperbolic i.e. distinct real eigenvalues

𝜆1,2 𝑡 =
ϵ

Δx
+

Δ𝑥

2

𝜕 ln𝐴

𝜕𝑡
±

ϵ

Δx
+

Δ𝑥

2

𝜕 ln𝐴

𝜕𝑡

2

+ 𝑐0
2,

■ CFL condition

Δ𝑡 𝑡 <
Δ𝑥

max(𝜆1 𝑡 , 𝜆2 𝑡 )
≤

Δ𝑥

ϵ
Δx

+ Δ𝑥
𝜕 ln𝐴
𝜕𝑡

+ 𝑐0



Numerics, contd.

■ Heun’s method (RK2): 𝑦′ = 𝑓 𝑥, 𝑦 ⟹

 𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝑓 𝑥𝑛, 𝑦𝑛 ,

𝑦𝑛+1 = 𝑦𝑛 +
Δ𝑡

2
𝑓 𝑥𝑛, 𝑦𝑛 + 𝑓 𝑥𝑛+1,  𝑦𝑛+1 ,

■ CFL-condition fulfilled by substepping

■ Only performed for tube elements – does not affect global step

■ Substep changes in time depending on  
𝜕 ln 𝐴

𝜕𝑡

■ Tube algorithm uses initial beam element length only



Numerical example

■ Silicone tube of length 1.7m, inner diameter 4mm and outer diameter 8mm

*DEFINE_PRESSURE_TUBE

$#     pid    sndspd init_prsr

6      340.     1.e-4

*DATABASE_PRTUBE

0.01,1

*PART

Pressure tube

$#     pid secid mid     eosid hgid grav adpopt tmid

6         6         3         0         0         0         0         0

*SECTION_BEAM

$#   secid elform shrf qr/irid cst scoor nsm

6         1       1.0         2         1 0.0       0.0

$#     ts1       ts2       tt1       tt2     nsloc ntloc

8.0       8.0       4.0       4.0       0.0       0.0

*MAT_ELASTIC_TITLE

Silicone

$#     mid        ro e        pr da        db not used        

32.30000E-6       1.0       0.2       0.0       0.0         0



Numerical example, contd.

Beam elements



Summary

■ Pros

■ Very simple to use

■ Extremely efficient (3D simulations with CPM/ALE/CESE are significantly slower without

any success so far)

■ Cons

■ Pressure solely dependent on area (area changes needs to be modeled accurately)

■ Inaccurate mechanical response in beam thickness direction (contact stiffness only)

■ 1D acoustic approximation may not be sufficient

■ Enhancements

■ Include shell geometry around beam or a phenomenological model for accurate area 

calculation and mechanical response

■ Solve full 1D Euler equations with e.g. Discontinuous Galerkin

■ Other boundary conditions



Thank you!

Your LS-DYNA distributor and 

more


