

Simulation of coldgas inflators while taking the Joule – Thomson – Effect into account

Tilo Laufer - Takata AG Berlin, 10th October 2016

- problem definition
- conventional inflator model
- direct inflator simulation using the CP-Method
 - the Joule Thomson Effect
 - results of the tank test
 - final results in alternative system model
 - conclusion

problem definition

- conventional inflator modelling:
 - Inflator mass-flow and temperature derived from tank test
- Takata's standardized inflation test

- Airbag simulation is a Fluid-Structure-Interaction (FSI) problem
- full FEA simulation coupled with CFD simulation is often to complex
 - Very long computing times
- Wang and Nefske [1] offered simplified approach to model the fluid behavior:

$$\frac{\mathrm{d}}{\mathrm{d}t}(mu)_{\mathrm{CV}} = \sum \dot{m}_{\mathrm{i}}h_{\mathrm{i}} - \sum \dot{m}_{\mathrm{0}}h_{\mathrm{0}} - \dot{W}_{\mathrm{CV}} - \dot{Q}_{\mathrm{CV}}$$

[1] Wang, J.T. and Nefske, D.J.: "A new cal3d airbag inflation model", SAE Technical Paper, 1988

- With the beginning of the 21st century NHTSA introduced the out of position requirement
- This lead to the need of a more accurate modeling of the fluid domain
 - LS-Dyna introduced the Corpuscular-Particle-Method (CPM)
 - With an acceptable increase of computation time the airbag deployment improved a lot
- But the CPM still needs a prescribed mass flow and temperature curve
 - By default derived from a tank test
 - The tank test brings by default a lot of assumptions in to the model

- Idea:
 - Direct modeling of cold gas inflators
 - Prefill the inflator with the correct mass, at the right pressure
 - Test the proper inflator output by simulating the tank

test

Tilo Laufer – Takata AG

ΑΤΑ

• The Joule-Thomson-Effect describes the temperature change of a fluid during a throttling process

$$\mu_{\rm JT} = \left(\frac{\partial T}{\partial p}\right)_{\!H}$$

- if $\mu_{\text{IT}} > 0$: the fluid will cool down at a throttling process
- if $\mu_{\text{IT}} < 0$: the fluid will heat up at a throttling process

$$\mu_{\rm JT} = \mu_{\rm JT}(p,T)$$

of a

$$p_2, T_2$$

 $p_1 > p_2$
 p_1, T_1

the Joule – Thomson – Effect

pressure characteristic

- Difference between test and simulation: •
 - The inflator output in simulation is lower then in ٠ test
 - Reason: missing of Joule-Thomson-Effect ٠
 - JT-Effect describes the temperature change of a real gas or liquid during a adiabatic throttling process

$$u_{JT}(T) = \frac{b - \frac{2a}{RT}}{C_{p}(T)}$$
$$= \frac{b - \frac{2a}{RT}}{C_{p0} + C_{p1}T + C_{p2}T^{2} + C_{p3}T^{3}}$$

٠

- Real gas (Van der Waals equation) ٠
 - a cohesion pressure
 - b co-volume ٠

10th October 2016

the Joule – Thomson – Effect • material parameter

- Calculate Joule-Thomson-coefficient:
 - Using the van-der-Waals ٠ coefficients from the table [2]
 - Approximate the Joule-Thomson-٠ coefficient with polynomial of order 4

[2] O. Babel.: "Joule-thomson-effekt", internet, 2014

Name of gas	a in Nm⁴ / kmol²	b in m³/kmol		
carbon dioxide	365585,65	0,0428		
nitrogen	136777,05	0,0386		
hydrogen	24645,79	0,0267		
helium	3468,81	0,0238		
air	135467,72	0,0365		

Tilo Laufer – Takata AG

- How to model the Joule-Thomson-Effect in LS-Dyna
 - Two new Keywords required
 - First (*DEFINE_CPM_VENT) is referenced in Card 8 of the Airbag Particle keyword

*DEI	FINE_CPM_VE	NT						
\$:	label	c23	lctc23	lcpc23	enh_v	ppop	c23up	
	1020&C23	_VENT	1120		1		1.0	
\$:	jt	ids1	-> ids2	iopt1				
	2	1010	1012					

• Second (*DEFINE_CPM_GAS_PROPERTIES) is referenced in Card 9 and 11 of the

Airbag Particle keyword

*DEFINE_CPM_GAS_PROPERTIES								
\$	ID	Xmm	Cp0	Cpl	Cp2	Cp3	Cp4	
	1301	0.0040026	20.8	0	0	0	0	
\$	mu_t0	mu_t1	mu_t2	mu_t3	mu_t4	Chm_ID	Vini	
	111.809	-13.3453	0.0617413-1.	2798e-49.	72665e-8	_		

- Results of tank test simulation: ٠
 - The Joule-Thomson-Effect closed the pressure gap ٠
 - good correlation between test and simulation ٠

pressure characteristic

pressure in kPa

results of the tank test

Tank-Test pressure comparison

time in ms

massflow comparison

final results in alternative system model

- Using the direct cold gas inflator modeling to simulate various system load-cases
 - System load-cases are represented by Takata's standardized inflation test with various vent sizes

- With LS-Dyna CP-Method it is possible to simulate cold-gas-inflators without tank-test assumptions
- The treatment of the Joule-Thomson-Effect is possible for more accurate results
- Open points
 - compare LS-Dyna Versions, currently:

mpp.s.R7.1.2.95028.95028 dmp sp

- Vary number of CPM-particles, currently: 100.000 particle
- Analyze pressure dependency in Joule-Thomson-Coefficients, currently: $\mu_{\text{IT}} = \mu_{\text{IT}}(T)$

Thank you for your attention

Tilo Laufer Takata AG, Safety Systems Numerical Simulation tilo.laufer@eu.takata.com 030-47407-4237 This presentation and the information included therein was compiled with the greatest care possible. This presentation serves as general information and does not contain any offer, acceptance, or contract of any kind. The information contained in this presentation can only become contractually binding when it is included in a written contract by or with TAKATA or its affiliates.

The information contained in this presentation is confidential and is the sole property of TAKATA or its affiliates. Any use, divulgement, publication, or reproduction of any kind of any of the information contained in this presentation, whether in whole or part, requires prior written approval from TAKATA or its affiliates.

