Recent developments in *DEFINE_PRESSURE_TUBE for simulating pressure tube sensors in pedestrian crash

Jesper Karlsson, DYNAmore Nordic AB

Special thanks to Ulf Westberg at Volvo Car Corp.

The pressure tube sensor

- Designed to detect collisions with pedestrians
- Air filled silicone tube embedded in bumper
- Pressure sensors at ends detect collision
- Reveals extent/location of impact

The basics

- Goal: simulate acoustic pressure waves in a thin long tube
 - Outer diameter ~8 mm
 - Inner diameter ~4 mm
 - Length ~2 m
 - 1D model seems appropriate
- Method: acoustic approximation of 1D compressible Euler equations
 - Pressure: $(Ap)_t + p_0(Au)_x = 0$
 - Velocity: $(Au)_t + Ac^2 p_x / p_0 = 0$
 - Density given by sound speed $c = \sqrt{p/\rho}$
 - Area depends on time and space
 - Constant area gives regular wave-equation: $p_{tt} = c^2 p_{xx}$

Implementation

- Tube defined by tubular beam elements
 - Variation in tube cross-section area drives pressure evolution
 - Cross-section area given by either
 - tube contact penetration, or
 - deformation of automatically generated solid/shell tube
 - One-way coupling between tube compression and air pressure
 - Output data saved in beam nodes

*DEFINE_PRESSURE_TUBE

- PID: Beam element part
- WS: Wave propagation speed
- PR: Initial gas pressure

Card 1	1	2	3	
Variable	PID	WS	PR	
Туре	I	F	F	
Default	0	0.0	0.0	

Solver schematics

Numerics

- Continuous Galerkin in space (artificial diffusion and linear damping)
- Heun's method in time (2nd order Runge-Kutta)
- CFL condition for stability

$$\Delta t < \min_{i} \frac{\Delta x_i}{\Delta x_i |A_t/A| + 3c}$$

- CFL-condition fulfilled by substepping
 - Does not affect global step
 - Substep changes in time depending on A_t/A
- Tube algorithm uses initial beam element length Δx_i

Pros and cons

Pros

Simple and extremely efficient

Cons

- No feedback to mechanical solver
- Pressure solver only uses radial tube compression
- Complex geometries like sharp bends, bifurcations, etc, not possible

New features

New features

- Automatic generation of shell/solid element tube
 - Better radial response
 - Cross-section area given by nodal displacements instead of contact penetration
- Varying thickness over length (*ELEMENT_BEAM_THICKNESS)
- New boundary conditions: open/closed ends
- Future development
 - More boundary conditions
 - Handling cavities at ends
 - Pressure feedback to mechanical solver

Keywords - *DEFINE_PRESSURE_TUBE

- Compulsory
 - PID: Beam element part
 - WS: Wave propagation speed
 - PR: Initial gas pressure

Optional

- MTD: Solution methods
- TYPE:
 - 0 = beam elements
 - 1 = convert to shell elements
 - 2 = convert to solid elements
- VISC: Artificial viscosity factor
- CFL: Time step factor
- DAMP: Linear damping
- BNDL/BNDR: Boundary conditions
 - 0 = closed end
 - 1 = open end

	Card 1	1	2	3	4	5	
	Variable	PID	WS	PR	MTD	TYPE	
	Туре	Ι	F	F	Ι	I	
	Default	0	0.0	0.0	0	0	
	Optional card						
	Card 2	1	2	3	4	5	
	Variable	VISC	CFL	DAMP		BNDR	
	Туре	F	F	F	F	F	
ן	Default	1.0	0.9	0.0	0.0	0.0	
\vdash							

Keywords - *DEFINE_PRESSURE_TUBE

Optional shell card

- NSHL: No. shells on circumference
- ELFORM: shell element type
- NIP: int. pts. through thickness
- SHRF: shear correction factor
- BPID: new PID for beams

Optional solid card

- NSLD: No. solids on circumference
- ELFORM: solid element type
- NTHK: no. solids through thickness
- BPID: new PID for beams

Card 3a	1	2	3	4	5
Variable	NSHL	ELFORM	NIP	SHRF	BPID
Туре	F	F	F	F	I
Default	12.0	16.0	3.0	1.0	optional

Optional shell card if TYPE=1

Optional solid card TYPE=2

Card 3b	1	2	3	4	5
Variable	NSLD	ELFORM	NTHK		BPID
Туре	F	F	F		I
Default	12.0	1.0	3.0		optional

Keywords - considerations

*SECTION_BEAM

- Only ELFORM=1,4,5,11 with CST=1, i.e. tubular beams
- Initial tube area using inner beam radius if >0, otherwise outer beam radius

Geometric constraints

- Each set of joint beam elements in a part will model a separate closed tube
- Different parts used in *DEFINE_PRESSURE_TUBE cards may not share beam nodes
- No junctions allowed

MPP

All beam elements in one part will be on same processor

Keywords - beams vs. shells

- Beam tube (TYPE=0)
 - Only works with Mortar contacts
 - Uses contact penetration to calculate area
 - Unphysical radial response depending on contact stiffness only
- Shell/solid tube (TYPE=1/2)
 - Shell/solid tube (new *PART, *SECTION, *ELEMENT) is created from beam geometry
 - Shells/solids get beam PID and beams are moved to new PID
 - Contacts and boundary conditions now applies to shells/solids instead of beams
 - Beam part only exists to store pressure solver data
 - Works with all contacts
 - Uses nodal postions to calculate area
 - Better radial response

Keywords - *DATABASE_PRTUBE

Saves cross section area, pressure, velocity, and density (derived variable)

Binout Open File List

/disk/proj/jesper/pi

>

Load

Unload

Save Maxtim

Multiple Select

Example model - beam elements of varying thickness

Example model - automatic conversion to shell elements

Example model - thickness compression

Example model - cross-section area and pressure

Example 1 - drop test

- 1.7 m long silicone tube
- Inner diameter 4 mm, outer diameter 8 mm
- Initial impactor velocity 10km/h
- Experimental data courtesy of Volvo Car Corporation

Example 1 - approaches

- Corpuscular Particle Method
 - Closed shell tube with gas domain inside
 - 2 million particles needed
 - 170 hours total CPU time
- Beam elements only
 - Tube and air modeled by beam elements
 - 10 minutes total CPU time
- Shell tube with embedded beam elements
 - Tube modeled with shell elements
 - Air modeled with beam elements
 - 4 hours total CPU time
- Automatically generated shell tube
 - 1 hour total CPU time

Example 1 - pressures

Example 1 - automatic shell tube

Example 2 - foam

Example 2 - foam

Summary

Pros

- Very simple to use
- Very efficient (ex. 15 min for beam tube, 1 hour for shell tube, 170 hours for CPM)

Cons

- Only one-way coupling to mechanical solver
- Only 1D model
- Open issues
 - Boundary conditions
 - Cavities at ends

