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Parameter Identification: Overview 

• New curve matching algorithm  

Dynamic Time Warping  

• Digital Image Correlation 

Nearest Neighbor Cluster: Reduce resources 

• Post-processing 

Automated Contour History display (LS-PrePost) using Similarity Measure 
 
 



Material Calibration: Introduction 
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Calibration: Computational challenges 

Noise  
Failure model: GISSMO ― 
element erosion a discrete 
process 

Hysteresis  
Material 125 ― 
Loading/Unloading (5 cases)  

Partial Matching  
Failure model: GISSMO ― post-
failure oscillation of coupon 

Experimental and computational results can be difficult to compare 



• DTW calculates the distance between two data sets, 
which may vary in time, via its corresponding 
warping path.  

• This path is the result of the minimum accumulated 
distance which is necessary to traverse all points in 
the curves.  

• The matching is end-to-end. 

• While the Euclidean distance measure is a strict one-
to-one mapping, DTW also allows one-to-many 
mappings. 

• Mathematically, optimize the path: 
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1
𝑙𝑙

𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊

� 𝛿𝛿(𝑤𝑤𝑖𝑖)
𝑙𝑙

𝑖𝑖=1

 

Sophie du Bois, Denis Kirpicev 2018 

Addressing noise: Dynamic Time Warping 



Dynamic Time Warping: DTW mapping 

Contour Mapping 
 

• Multi-point histories: Apply to 
multiple points (full field): 𝜺𝜺 
vs. force 

 
• Use DTW map to construct 

test contours for comparison 
 
 
          
     simulation           experiment 

Best fit DTW 
map 

Poor fit DTW 
map 

Sophie du Bois, Denis Kirpicev 

Simulated GISSMO model: force-displacement curves for tensile test 
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Dynamic Time Warping: Partial curves 

 

• In DTW, red connectors are summed 

• Curve length difference artificially 
distorts mismatch 

• Truncation required 

Partial curve pairs can distort the DTW result 



Example: GISSMO model 

The GISSMO failure model requires special treatment for curve matching 
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• Parameters: 7, Material Model: 
GISSMO 
– Uses discrete (element-by-element) 

erosion 

• Curve Matching 
– Dynamic Time Warping (DTW) 
– Does not address partial curves ⇨ 

Truncate Force history at failure 

• Optimization  
– SRSM (fast local optimizer) 

Shear: single case calibration history 



Calibration: GISSMO model 

 

Tensile Notch 

Shear Punch 

In industry, the calibration of the GISSMO model typically involves multiple cases 

Optimal match 

Courtesy: FCA 



Digital Image Correlation 



Full field test result (4557 pts) 
from optical scan is 
mapped and tracked 

DIC data: deformation 
states 

Local deformation 

𝑡𝑡 = 0 

Digital Image Correlation (DIC) 

Alignment 

Align and map optical data to the Finite Element model 



Digital Image Correlation: LS-OPT technologies (1) 

• Alignment in 3D of test to FE model. 
Least Squares solution: 

 
 

𝑿𝑿1:Test pts (subset), 𝑿𝑿2: FE model pts, 𝑻𝑻: 
transform, �̂�𝑠: Isotropic scaling. Typically 3 or 4 
points 

– Alternative: LS-PrePost® to translate, 
rotate and scale test points.  

 

• Map: Test →  FE mesh: 
– Exact Nearest Neighbor (bin tree) search and 

element interpolation (107 → 107 pts). 
(Practice: ~ 106)  
 
 
 
 
 

 
• Optimization: Minimize Similarity Measure:  
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Validation of a Synthetic Problem 

  𝒄𝒄∗ 𝒏𝒏∗ 

Start 4.0 0.9 

PCM 0.502 0.501 

DF 0.500 0.500 

DTW 0.497 0.499 

Exact 0.500 0.500 

𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑦𝑦𝑦𝑦 Fo
rc

e 

Test pts & 
nodes 
coincide 

Material 24 with Hockett-Sherby 
flow curve extrapolation 

𝑓𝑓 𝜀𝜀𝑝𝑝 = 𝐴𝐴 − 𝐵𝐵𝑒𝑒−𝑐𝑐𝜀𝜀𝑝𝑝𝑝𝑝
𝑛𝑛

 
• 𝒄𝒄 and 𝒏𝒏 are variables 

Full-field deformation 



Distance vs. parameters 

Partial Curve Mapping Discrete Fréchet Dynamic Time Warping 

Different similarity measures compared 



Example 1: DIC Validation: Punch example 
 
Calibrate GISSMO material properties using strains/transverse displacement 

DIC data 

Courtesy: FCA 



𝑢𝑢𝑧𝑧 

𝜀𝜀1 

𝜀𝜀2 

Example 1: DIC Validation: Punch example 

Computed Test Difference 

The calibration was done using a Force-Displacement similarity match (GISSMO) 

Courtesy: FCA 



Digital Image Correlation: Nearest Neighbor Cluster 
4557 points 1063 points 

• Accuracy and cost 
• Nearest Neighbor Clustering 

– Pre-processing feature 
– Reduce resources for large point set 

(~106) 
• Storage space 
• CPU time: mapping is done at each 

time step (vanishing nodes/points) 
– Nodal 1-to-1 map 
– Can also apply a proximity tolerance for 

removing outlier points 
• Algorithm (𝒕𝒕 = 𝟎𝟎) 

– Nearest node to each point → reduced 
node set. 

– Prune reduced node set → nearest points 
– 1-to-1 map 



Digital Image Correlation: Nearest Neighbor Cluster 

• Accuracy and cost 
• Nearest Neighbor Clustering 

– Pre-processing feature 
– Reduce resources for large point set 

(~106) 
• Storage space 
• CPU time: mapping is done at each 

time step (vanishing nodes/points) 
– Nodal 1-to-1 map 
– Can also apply a proximity tolerance for 

removing outlier points 
• Algorithm (𝒕𝒕 = 𝟎𝟎) 

– Nearest node to each point → reduced 
node set. 

– Prune reduced node set → nearest points 
– 1-to-1 map 

𝟑𝟑. 𝟖𝟖 × 𝟏𝟏𝟎𝟎𝟓𝟓 points 𝟕𝟕𝟕𝟕𝟕𝟕𝟓𝟓 points = 𝟏𝟏. 𝟗𝟗𝟗 

Enlarged 

DIC Test points 
(full set) 

Nearest test 
points 



Example 2: Tensile test 

Computed 

DIC Test 
points 

𝜀𝜀𝑦𝑦𝑦𝑦 Nearest test 
points 

DIC 

𝜀𝜀𝑥𝑥𝑥𝑥 
FE model 

The contour comparison uses Dynamic Time Warping: 𝟑𝟑. 𝟖𝟖 × 𝟏𝟏𝟎𝟎𝟓𝟓 DIC points 

• Reduces 380,000 DIC points to 7275 points 
with nodal neighbors 

• Reduces extraction time from 2 hours → 6 
minutes 



LS-OPT DIC calibration feature summary (v6.0) 

• DIC Interfaces: 
– gom/ARAMIS 

• v6 CSV 
• v7 XML 

– Fixed Format (LS-PrePost) 
– Free Format (LS-OPT/GenEx parser) 

• LS-DYNA interface 
– Multi-point histories (d3plot) 
– Entities 

• Nodal  
• Shell  
• Solid 

– Exact nearest neighbor point mapping (~107 
pts). Test pt → FE pt 

• Curve similarity methods 
– Euclidean, Fréchet,  
 DTW, PCM 

• Filtering 
– Online filtering (SAE, Ave) 

• GUI 
– Test pre-view 
– Test alignment 

 
 
 

– Strain fringe plot (LS-PrePost) 
• Simulation 
• Experiment 
• Error 

 
 

 
DTW 



Outlook 

• General feature: Improved pre-viewing/pre-processing of experimental data. 

Interactive filtering and truncation of test results 

• Partial DTW-based curve mapping 

DTW-LCS method 

• Further speedup 

Multiple similarity responses typically have the same mapping 
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Overview 
 

• Metamodeling Challenges 

 

 

• Statistical Classification-based Constraint Definition in LS-OPT 6.0 

 

• Support Vector Machines (SVM)  

 

 

• Examples – discontinuous responses, hidden/binary constraints, 
multidisciplinary constraints, system reliability 

 

• Future enhancements/Potential Applications/Summary 



Constraint Approximation Using Metamodels 

Mass approximation 

Intrusion approximation 

Intrusion Feasibility  
prediction of designs 

Mass Feasibility prediction of designs Mass constraint limit 

Intrusion constraint limit 

System Feasibility 
(Mass + Intrusion)  

of designs 
intrusion 

mass 

Mass < 0.9 
Intrusion < 550 mm 

Run 
simulations 

Approximate 
response 

Feasibility 
threshold 

Projection on the design space 
shows predicted feasible regions 

var1 

var1 



Metamodeling Challenges 

Biomedical Binary application  
(Blood leakage from Stent) 

Binary information:  

Failed (leaked) or not (no leakage) 

What if simulation does not provide quantifiable response values? 
‒ Failed simulations 
‒ Binary pass/fail information (e.g. 3rd party proprietary response values) 
‒ Failure determined through prior experience 

Conventional Metamodel Approximation Not Possible! 

Layman, R. et al. "Simulation and probabilistic failure prediction of grafts for aortic 
aneurysm.“ Engineering Computations 27.1 (2010): 84-105. 

CRUSHING 

Discontinuity 
No prior threshold  

GLOBAL BUCKLING 

Clustering: Identify two classes (pass/fail) 
Discontinuity with unknown threshold 

Basudhar, Anirban, and Samy Missoum. "A sampling-based approach for probabilistic design with random  
fields." Computer Methods in Applied Mechanics and Engineering198.47-48 (2009): 3647-3655. 



Constraint Boundary Using Classification 

Construct 
decision 

boundary 

Run 
simulations 

Feasibility 
check for 
samples 

Response value not necessary  
when using classifier (only feasibility information) 

Available Information: 
‒ Design point  (variable values) 
‒ Feasibility of each design  
   (e.g. red vs green) 

Infeasible 

Feasible 

Var 1 

Examples: 
• Simulation failure, 
• 3rd party propreitary  
  information 
• Unknown threshold  
• Combining experience 
   with simulations etc.   

Design Space 

Design Space Decomposition 
Using LS-OPT 

Classifier 
Boundary 

Pattern Recognition 

Infinite number of boundaries possible!! 

Need Optimal boundary 



Optimal Boundaries Using Support Vector Machine 

Machine learning technique for pattern recognition 

separating hyperplane 

 support hyperplanes 

margin Class -1 

class +1 

support vectors 

• Separating Hyperplane 
 s(x) = w.x + b = 0 

• Support Hyperplanes 
  s(x) = +1 and s(x) = -1 
• Margin = 2/||w|| 

0                                        0.5                                        1 
0 

0.5 

1 

no sample within  
margin 

•  General nonlinear separating function: 

Optimal SVM maximizes the margin 



Classifier GUI In LS-OPT 

Information for Classifier definition: 
 Underlying response 
 Feasibility criterion 
 Classifier Type 

Any entity type can be a classifier component 
 
Classifiers can be nested (classifier component) 
 
Classifiers can be series or parallel or mixed 



Ex 1: Optimization with Discontinuous Constraint 

Modal Analysis of a simple car - mode shape tracked to account for switching 

 2.2 Frequency  Mode Torsional 1..
min

≥stts
Mass

Bumper thickness 
tbumper 

Back rail thickness 
trailb 

Mode switching causes discontinuity in the frequency response 



Ex 1: Metamodel for Discontinuous Constraint 

Metamodel-based Approach:   
Approximate objective function and constraints 

trailb 

Obj fun approximation Con fun approximation Obj fun + Con limit state 

Approximating discontinuous functions  
can compromise accuracy 

Obj Fun: Mass 
Con: Frequency of 1st torsional mode 
Discontinuity due to mode switching 



Ex 1: SVM Classifier for Discontinuous Constraint 
Obj fun approximation Con fun approximation 

Metamodel-based 
Optimal Mass = 1.788 

250 samples 

SVM classifier-based 
Optimal Mass = 1.746 

250 samples 

tbumper 



Ex 2: Non-convex discontinuous constraint reliability 

Reliability Assessment 
 
B-pillar intrusion < 585 mm 
Lower beam intrusion < 710 mm 
Door intrusion < 638.23 mm Side Pole Impact 

Actual constraint feasibility 
(20,000 LS-DYNA runs) 

Random/Noise Variables: 
 
Beam Thickness  
tbeam N(4,0.4) 
 
Floor Thickness 
tfloor N(2.5,0.25) 
 

tfloor 
tbeam 

discontinuity 
Δtbeam: 0.08 mm 
Δtfloor: 0.1 mm 
Response change: 27 mm 

tbeam 

tfloor 

FEASIBLE 

INFEASIBLE 



Ex 2: Non-convex discontinuous constraint reliability 

• SVM able to approximate highly nonlinear boundaries accurately 

• Single classifier represents 3 intrusion constraints (system reliability) 

tbeam 

Actual constraint feasibility 
(LS-DYNA) 

Neural net approximation of 
constraint (inaccurate) 

Feasible 

Infeasible 

SVM classifier-based 
constraint (accurate) 

Failure probability using Neural Network Metamodel (400 samples): 0.0217  
Failure probability using SVM Classifier (400 samples): 0.0218 
Actual Failure probability: 0.0219 

tbeam tbeam 



• Torsional mode frequency constraint added 

      (frequency > 41.6) 

• NVH analysis followed by crash analysis 

• Because classifier is used, crash analysis needed only at feasible NVH points 

• Crash simulation savings: 246 out of 400 (61.5 %) 

tbeam 

INFEASIBLE 

Ex 3: 2-disciplinary System Reliability (Unequal Costs) 

tbeam 

NVH Samples (400) 

X 
Crash Samples (154) 

tbeam 

X 
INFEASIBLE 



• We can get a very accurate decision boundary for inexpensive load cases 

 

Ex 3: 2-disciplinary System Reliability (Unequal Costs) 

tbeam 

NVH Samples (400+) Crash Samples (154) 

tbeam 

Dual-disciplinary Classification 
(NVH + Side Impact) 

tbeam 

DISJOINT DOMAINS 

• Expensive cases sampled within the domain defined by the classifier 

 

Sampling region for subsequent load case 

INFEASIBLE 
DSIGN 

FEASIBLE  
NVH 

X DO NOT SAMPLE  
CRASH 

tbeam 

INFEASIBLE NVH 

INFEASIBLE 
 CRASH 

CRASH  
SAMPLING 

REGION 



Ex 3: 2-disciplinary Constraint Comparison 

METAMODEL 
Pf = 0.7751 
Crash samples: 400 

SVM CLASSIFIER 
Pf = 0.7577 
Crash samples: 154 

Actual Pf = 0.7598 

Metamodel: 2.01% error Classifier: 0.28% error 



Baseline  
Torsional  
Mode 

Crash model  
and MDO  
design parts 

𝑚𝑚𝑚𝑚𝑚𝑚        𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥1,2..7  
𝑀𝑀. 𝑡𝑡.         41.38𝐻𝐻𝐻𝐻 < 𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < 42.38𝐻𝐻𝐻𝐻 
                𝑆𝑆𝑡𝑡𝑀𝑀𝑆𝑆𝑆𝑆 1 𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑆𝑆 > 13.94𝑆𝑆 
                𝑆𝑆𝑡𝑡𝑀𝑀𝑆𝑆𝑆𝑆 2 𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑆𝑆 > 19.17𝑆𝑆 
                𝑆𝑆𝑡𝑡𝑀𝑀𝑆𝑆𝑆𝑆 3 𝑝𝑝𝑝𝑝𝑝𝑝𝑀𝑀𝑆𝑆 > 21.3𝑆𝑆 
𝑤𝑤𝑤𝑆𝑆𝑤𝑤𝑆𝑆 
• 𝑥𝑥1,2..7 𝑀𝑀𝑤𝑤𝑆𝑆 𝑡𝑡𝑤𝑆𝑆 𝑑𝑑𝑆𝑆𝑀𝑀𝑚𝑚𝑆𝑆𝑚𝑚 part thicknesses 
• 𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑀𝑀 𝑡𝑡𝑤𝑆𝑆 𝑓𝑓𝑚𝑚𝑤𝑤𝑀𝑀𝑡𝑡 𝑡𝑡𝑡𝑡𝑤𝑤𝑀𝑀𝑚𝑚𝑡𝑡𝑚𝑚𝑀𝑀𝑝𝑝 𝑓𝑓𝑤𝑤𝑆𝑆𝑓𝑓𝑝𝑝𝑆𝑆𝑚𝑚𝑓𝑓𝑓𝑓 

Determine feasibility of the NVH  
designs  

Run cheaper NVH analysis first 

Run crash analysis only for feasible  
NVH designs 

Total crash runs saved:  
297 (37%) 

Ex 4: Multidisciplinary Optimization (MDO) Cost Savings 



Computation cost savings using classifiers 
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Iterations NVH Crash Feasible 
NVH  
sub domain 

Load 
Case 

Runs per 
iteration 

Total runs 
(without 

classifiers) 

Total runs 
using  

classifiers 

Savings 

NVH 40 800 800 0 

Crash 40 800 503 297 (37%) 

NVH 
Feasible  
region 

DV 1 
Stage 1 pulse 

Frequency 

Ex 4: Multidisciplinary Optimization (MDO) Cost Savings 



Other Applications & Enhancements 

Adaptive Sampling 
• Sampling near classifier boundary 

 
 

• Sampling the feasible regions 

Basudhar, Anirban, and Samy Missoum. "An improved adaptive sampling 
scheme for the construction of explicit boundaries."  
Structural and Multidisciplinary Optimization 42.4 (2010): 517-529. 

Feasible 
Micro scale Material model Macro scale Material model 

x* 
x X 

Prof. S. Kumar, Dr. H. Ghassemi-Armaki (Brown U.),  
Prof. F. Pourboghrat (OSU) 

X2 

X1 



Other Applications & Enhancements 

Adaptive Explicit Multi-Objective Optimization (MOO) 
 
 
 
 
 
 
 
MOO considered as a classification problem:  
DOMINATED vs NON-DOMINATED 
 

Var1 

Var2 Feasible Design Space 

Non-dominated designs 

s(x) = 0 

s(x)>0 s(x)<0 

s(x)>0 

Dominated designs 

Basudhar, Anirban. "Multi-objective Optimization Using Adaptive Explicit Non-Dominated Region Sampling."  
11th World Congress on Structural and Multidisciplinary Optimization. 2015. 



Other Applications & Enhancements 

Probabilistic Classifiers 
• Constrained Efficient Global Optimization 

 
 

• Conservative Failure Probability Estimate 
 
 
 
 

• Probabilistic SVM, Random Forest Classifier 

 
Basudhar, Anirban, and Samy Missoum. "Reliability assessment using  
probabilistic support vector machines." International Journal of  
Reliability and Safety 7.2 (2013): 156-173. 

Basudhar, Anirban, et al. "Constrained efficient global optimization with support vector machines."  
Structural and Multidisciplinary Optimization 46.2 (2012): 201-221. 



Other Applications & Enhancements 

Adaptive simulation time reduction 
 
Check failure criteria during simulation 

critical value 

Terminate simulation 



Summary 

• Classifier-based constraint definition method in LS-OPT 6.0 
 

• Support Vector Machines used for classification 
 

• Benefits shown for binary/discontinuous response & MDA/MDO 
 
 
 
 
 

• Series/parallel or mixed system constraints can be defined 
 

• Classifiers can be used for optimization or for reliability  

Non-convex,  
disjoint 

Binary information:  

Failed (leaked) or not 
(no leakage) 

Evaluated  
infeasible 
constraint 

Evaluation  
unnecessary 

Avoid evaluation of  
all load cases 

Layman, R. et al. "Simulation and  
probabilistic failure prediction of  
grafts for aortic aneurysm."  
Engineering Computations  
27.1 (2010): 84-105. 



Non-convex,  
disjoint 

Var1 

Var2 

Feasible Design Space 

Non-dominated designs 

s(x) = 0 

s(x)>0 s(x)<0 

s(x)>0 

Dominated designs 

Evaluated  
infeasible 
constraint 

Evaluation  
unnecessary 

Avoid evaluation of  
all load cases 
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