Full-Field Material Calibration Using LS-OPT®

<u>Nielen Stander</u>, Anirban Basudhar, Imtiaz Gandikota, Suri Bala Sophie Du Bois, Denis Kirpicev H Keshtkar, A Patil, A Sheshadri, P Du Bois (Fiat Chrysler Automobiles)

German LS-DYNA Forum Bamberg, Germany October 16, 2018

Parameter Identification: Overview

New curve matching algorithm

Dynamic Time Warping

• Digital Image Correlation

Nearest Neighbor Cluster: Reduce resources

• Post-processing

Automated Contour History display (LS-PrePost) using Similarity Measure

Material Calibration: Introduction

strain///

Dr. H. Ghassemi-Armaki (Brown U.) Prof. F. Pourboghrat (OSU)

Calibration: Computational challenges

Experimental and computational results can be difficult to compare

Noise

Failure model: GISSMO element erosion a discrete process

Hysteresis

Material 125 — Loading/Unloading (5 cases)

Partial Matching

Failure model: GISSMO — postfailure oscillation of coupon

Addressing noise: Dynamic Time Warping

- DTW calculates the distance between two data sets, which may vary in time, via its corresponding warping path.
- This path is the result of the minimum accumulated distance which is necessary to traverse all points in the curves.
- The matching is end-to-end.
- While the Euclidean distance measure is a strict oneto-one mapping, DTW also allows one-to-many mappings.
- Mathematically, optimize the path:

$$DTW(P,Q) = \frac{1}{l} \min_{W} \left\{ \sum_{i=1}^{l} \delta(w_i) \right\}$$

₃ x-axis

0

Sophie du Bois, Denis Kirpicev 2018

Dynamic Time Warping: DTW mapping

Simulated GISSMO model: force-displacement curves for tensile test

Sophie du Bois, Denis Kirpicev

Dynamic Time Warping: Partial curves

Partial curve pairs can distort the DTW result

- In DTW, red connectors are summed
- Curve length difference artificially distorts mismatch
- Truncation required

Example: GISSMO model

The GISSMO failure model requires special treatment for curve matching

- Parameters: 7, Material Model: GISSMO
 - Uses discrete (element-by-element) erosion
- Curve Matching
 - <u>Dynamic Time Warping (DTW)</u>
 - Does not address partial curves ⇒ <u>Truncate Force history</u> at failure
- Optimization
 - SRSM (fast local optimizer)

Shear: single case calibration history

Calibration: GISSMO model

In industry, the calibration of the GISSMO model typically involves multiple cases

Digital Image Correlation

Digital Image Correlation (DIC)

Align and map optical data to the Finite Element model

Digital Image Correlation: LS-OPT technologies (1)

• *Alignment* in 3D of test to FE model. Least Squares solution:

 $\min_{\boldsymbol{T},\hat{s}} \|\hat{s}\boldsymbol{X}_1\boldsymbol{T} - \boldsymbol{X}_2\|$

- X_1 :Test pts (subset), X_2 : FE model pts, T: transform, \hat{s} : Isotropic scaling. Typically 3 or 4 points
- Alternative: LS-PrePost[®] to translate, rotate and scale test points.

Align Test points

- *Map:* Test \rightarrow FE mesh:
 - Exact Nearest Neighbor (bin tree) search and element interpolation $(10^7 \rightarrow 10^7 \text{ pts})$. (Practice: ~ 10^6)

• *Optimization: Minimize Similarity Measure:*

Validation of a Synthetic Problem

Distance vs. parameters

Different similarity measures compared

Example 1: DIC Validation: Punch example

Calibrate GISSMO material properties using strains/transverse displacement

Courtesy: FCA

Example 1: DIC Validation: Punch example

The calibration was done using a Force-Displacement similarity match (GISSMO)

Digital Image Correlation: Nearest Neighbor Cluster

- Accuracy and cost
- Nearest Neighbor Clustering
 - Pre-processing feature
 - Reduce resources for large point set $(\sim 10^6)$
 - Storage space
 - CPU time: mapping is done at each time step (vanishing nodes/points)
 - Nodal 1-to-1 map
 - Can also apply a proximity tolerance for removing outlier points
- Algorithm (t = 0)
 - Nearest node to each point \rightarrow reduced node set.
 - Prune reduced node set \rightarrow nearest points
 - 1-to-1 map

Digital Image Correlation: Nearest Neighbor Cluster

- Accuracy and cost
- Nearest Neighbor Clustering
 - Pre-processing feature
 - Reduce resources for large point set $(\sim 10^6)$
 - Storage space
 - CPU time: mapping is done at each time step (vanishing nodes/points)
 - Nodal 1-to-1 map
 - Can also apply a proximity tolerance for removing outlier points
- Algorithm (t = 0)
 - Nearest node to each point \rightarrow reduced node set.
 - Prune reduced node set \rightarrow nearest points
 - 1-to-1 map

Enlarged

Example 2: Tensile test

The contour comparison uses *Dynamic Time Warping*: $3.8 imes 10^5$ DIC points

LS-OPT *DIC* calibration feature summary (v6.0)

- DIC Interfaces:
 - gom/ARAMIS
 - v6 CSV
 - v7 XML
 - Fixed Format (LS-PrePost)
 - Free Format (LS-OPT/GenEx parser)
- LS-DYNA interface
 - Multi-point histories (d3plot)
 - Entities
 - Nodal
 - Shell
 - Solid
 - Exact nearest neighbor point mapping (~ 10^7 pts). Test pt \rightarrow FE pt
- Curve similarity methods
 - Euclidean, Fréchet,
 DTW, PCM

- Filtering
 - Online filtering (SAE, Ave)
- GUI
 - Test pre-view
 - Test alignment

- Strain fringe plot (LS-PrePost)
 - Simulation
 - Experiment
 - Error

Outlook

• General feature: Improved pre-viewing/pre-processing of experimental data.

Interactive filtering and truncation of test results

Partial DTW-based curve mapping

DTW-LCS method

• Further speedup

Multiple similarity responses typically have the same mapping

Applications & Potential of Classifiers In LS-OPT 6.0

Anirban Basudhar (LSTC),

K. Witowski (DYNAmore GmbH), I. Gandikota, N. Stander, D. Kirpicev (LSTC)

15th German LS-DYNA Forum, October 2018

Overview

Metamodeling Challenges

- Statistical Classification-based Constraint Definition in LS-OPT 6.0
- Support Vector Machines (SVM)

- Examples discontinuous responses, hidden/binary constraints, multidisciplinary constraints, system reliability
- Future enhancements/Potential Applications/Summary

Constraint Approximation Using Metamodels

Metamodeling Challenges

What if simulation does not provide quantifiable response values?

- Failed simulations
- Binary pass/fail information (e.g. 3rd party proprietary response values)
- Failure determined through prior experience

Layman, R. et al. "Simulation and probabilistic failure prediction of grafts for aortic aneurysm." *Engineering Computations* 27.1 (2010): 84-105.

Basudhar, Anirban, and Samy Missoum. "A sampling-based approach for probabilistic design with random fields." *Computer Methods in Applied Mechanics and Engineering* 198.47-48 (2009): 3647-3655.

Conventional Metamodel Approximation Not Possible!

Constraint Boundary Using Classification

Examples:

- Simulation failure,
- 3rd party propreitary information
- Unknown threshold
- Combining experience with simulations etc.

Infinite number of boundaries possible!!

Need Optimal boundary

Optimal Boundaries Using Support Vector Machine

Optimal SVM maximizes the margin

- Separating Hyperplane
 s(x) = w.x + b = 0
- Support Hyperplanes
 s(x) = +1 and s(x) = -1
- Margin = 2/||**w**||
- General nonlinear separating function:

$$b + \sum_{i=1}^{NSV} \lambda_i y_i K(\mathbf{x}_i, \mathbf{x}) = 0$$

Classifier GUI In LS-OPT

Ex 1: Optimization with Discontinuous Constraint

Modal Analysis of a simple car - mode shape tracked to account for switching

- min Mass
- s.t. 1^{st} Torsional Mode Frequency ≥ 2.2

Mode switching causes discontinuity in the frequency response

Ex 1: Metamodel for Discontinuous Constraint

Ex 1: SVM Classifier for Discontinuous Constraint

tbumper

250 samples

Ex 2: Non-convex discontinuous constraint reliability

Ex 2: Non-convex discontinuous constraint reliability

- SVM able to approximate highly nonlinear boundaries accurately
- Single classifier represents 3 intrusion constraints (system reliability)

Failure probability using Neural Network Metamodel (400 samples): 0.0217 Failure probability using SVM Classifier (400 samples): 0.0218 Actual Failure probability: 0.0219

Ex 3: 2-disciplinary System Reliability (Unequal Costs)

- Torsional mode frequency constraint added (frequency > 41.6)
- NVH analysis followed by crash analysis
- Because classifier is used, *crash analysis needed only at feasible NVH points*
- Crash simulation savings: 246 out of 400 (61.5 %)

Ex 3: 2-disciplinary System Reliability (Unequal Costs)

- We can get a very accurate decision boundary for inexpensive load cases
- Expensive cases sampled within the domain defined by the classifier

Crash Samples (154)

Dual-disciplinary Classification

NVH Samples (400+)

Ex 3: 2-disciplinary Constraint Comparison

Ex 4: Multidisciplinary Optimization (MDO) Cost Savings

Ex 4: Multidisciplinary Optimization (MDO) Cost Savings

Adaptive Sampling

Sampling near classifier boundary

Basudhar, Anirban, and Samy Missoum. "An improved adaptive sampling scheme for the construction of explicit boundaries." Structural and Multidisciplinary Optimization 42.4 (2010): 517-529.

Sampling the feasible regions •

Prof. F. Pourboghrat (OSU)

Adaptive Explicit Multi-Objective Optimization (MOO)

Var1

Basudhar, Anirban. "Multi-objective Optimization Using Adaptive Explicit Non-Dominated Region Sampling." *11th World Congress on Structural and Multidisciplinary Optimization*. 2015.

MOO considered as a classification problem: DOMINATED vs NON-DOMINATED

Probabilistic Classifiers

• Constrained Efficient Global Optimization

Basudhar, Anirban, et al. "Constrained efficient global optimization with support vector machines." *Structural and Multidisciplinary Optimization* 46.2 (2012): 201-221.

Conservative Failure Probability Estimate

Basudhar, Anirban, and Samy Missoum. "Reliability assessment using probabilistic support vector machines." *International Journal of Reliability and Safety* 7.2 (2013): 156-173.

• Probabilistic SVM, Random Forest Classifier

Adaptive simulation time reduction

Check failure criteria during simulation

Summary

- Classifier-based constraint definition method in LS-OPT 6.0
- Support Vector Machines used for classification

Benefits shown for binary/discontinuous response & MDA/MDO

- Series/parallel or mixed system constraints can be defined
- Classifiers can be used for optimization or for reliability

