

15th German LS-DYNA Forum

Modeling bolts in LS-DYNA[©] using explicit and implicit time integration

Nils Karajan, Alexander Gromer (DYNAmore Corp.); <u>Maik Schenke (</u>DYNAmore GmbH); Thomas Borrvall (DYNAmore Nordic); Kishore Pydimarry (Honda R&D Americas, Inc.)

17 October 2018, Bamberg, Germany

Friction Grip Bolts

Definitions and load bearing mechanism

- What is a bolted friction grip connection
 - Fastener is a bolt with a head, a threaded shank and a nut to apply tension
 - Washers may be included to distribute tensioning loads more evenly
 - Joins two or more sheets or blocks of material
 - Load carrying mechanism
 - Bolt pre-tensioning (clamping) allows to build up friction forces
 - Service loads are only carried by friction forces between plates
 - Above service loads, slipping occurs until hole bearing forces take over

[images: www.wikipedia.com]

In-plane failure modes

- Above service loads the law of static friction is violated
- Slipping motion between plates with dynamic friction resisting the motion
- Hole bearing forces take over after bolt-to-plate contact is established
- Failure will occur in the weakest part of the bolt or the plate

EW

Bolt fails in shear

bolted connection - bolt shear

Here: No characterization of the failure itself

[videos: www.youtube.com/user/ExpeditionWorkshed]

Public use

Friction Grip Bolts

Bolt grades and pre-tension forces

- Pre-tension force based on yield stress
 - Application by tightening torque

Public use ivermore Software

STC

echnology Corp.

Friction Grip Bolts

Modeling Techniques for Pre-Tensioned Bolts in LS-DYNA

Overview of the "bolt types" used in this presentation

shell elements solid elements	a)			
shank discretization	spot weld beam	spot weld beam	spot weld beam	solid elements
shank material	*MAT_SPOTWELD	*MAT_SPOTWELD	*MAT_SPOTWELD	any (*MAT_024)
pre-stress/tension application	*INITIAL_AXIAL_ FORCE_BEAM	*INITIAL_AXIAL_ FORCE_BEAM	*INITIAL_AXIAL_ FORCE_BEAM	*INITIAL_STRESS _SECTION
head / nut discretization	nodal rigid body or beam spider	shell elements	solid elements	solid elements
contact beam on shank	no	yes & no (depend	ls on contact card)	not necessary
contact beams @ shell plate	no	yes & no (depend	ls on contact card)	yes & no (contact)
contact beams @ solid plate	no	yes & no (depend	ls on contact card)	not necessary

- *CONTACT AUTOMATIC SINGLE SURFACE
 - "Classic" node to segment penetration check

- Captured contact situations
 - Nodes not allowed to penetrate segments
 - Segment extension on nodes of shell edge
- Missed contact situations
 - Beam to beam
 - Beam to shell edge
 - Beam to segment of shell and solid
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid

- *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - Now SOFT=2 : segment-based penetration check

- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
- Missed contact situations
 - Beam to beam
 - Beam to shell edge
 - Beam to segment of shell and solid
 - Also when beam nodes are "on segment"

CPU contact w. R10.1: 2.6 s [81%]

- *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - Now SOFT=2 : segment-based penetration check
 - No segment extension on shell edge (*CONTROL CONTACT, SHLEDG=1)

- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
- Missed contact situations
 - Beam to beam
 - Beam to shell edge
 - Beam to segment of shell and solid
 - Also when beam nodes are "on segment"

*CONTACT_AUTOMATIC_GENERAL

- "Classic" node to segment penetration check
- Enhanced by beam to beam penetration check
 - Shell edges treated as beams

- Captured contact situations
 - Nodes not allowed to penetrate segments
 - Beam to beam
 - Beam to shell edge (segment extension!)
- Missed contact situations
 - Beam to segment of solid (but shell works)
 - Shell edge to segment of solid (but shell works)
 - Solid edge to segment of solid

- *... AUTOMATIC SINGLE SURFACE MORTAR
 - Segment-based penetration check

- Captured contact situations
 - Segments not allowed to penetrate segments
 - Shell edge to segment of shell and solid
 - Solid edge to segment of shell and solid
 - Beam to beam
 - Beam to shell edge (NO segment extension!)
 - Beam to segment of shell and solid
- Missed contact situations
 - None (since recently also spot weld beams)

Bolt type a)

- General remarks
 - Simplest way to add pre-tension to a friction grip bolt connection
 - Spot weld beam of shaft is connected via rigid or deformable beam spider
 - No additional contact needed besides *CONTACT_AUTOMATIC_SINGLE_SURFACE
- Explicit vs. implicit time integration
 - The _MORTAR option is typically advised to use in implicit simulations
- Merits and drawbacks
 - Usually only good within the service load regime
 - Above service loads, slipping between sheets and head/nut is missed
 - Rigid beam spiders influence stress wave propagation
 - For connection of three sheets with slipping motion, refer to bolt type b)
 - Failure probably not well captured

Bolt type b)

- General remarks
 - More detailed method to model friction grip bolt connections
 - Possibility to predict slipping beyond service load and even failure
 - Sheets Head, nut and washers in *CONTACT_AUTOMATIC_SINGLE_SURFACE
 - If hole bearing behavior is of interest a special contact is needed
 - *CONTACT_AUTOMATIC_GENERAL
 - □ Needs contact null beam with *MAT_NULL on spot weld beam
 - Needs contact null beams at the perimeter of the hole
 - to limit the usage of this more expensive contact definition
 - exhibits beam-to-beam self contact of contact null beams when in same part ID
 - *CONTACT_AUTOMATIC_GENERAL_MPP
 - □ No need for contact null beam on top of spot weld beam, if CPARM8=2
 - □ Contact null beams at the perimeter of the hole are still advised
 - to limit usage of more expensive contact
 - CPARM8=1 or 2 excludes beam-to-beam self contact from the same part ID

Bolt type b) – cont'd

- Explicit vs. implicit time integration
 - The _MORTAR option is typically advised to use in implicit simulations
 - In theory, no contact null beams are needed
 - In practice, contact null beams are still modeled
 - □ Mortar contact stiffness is smaller on shell edges
 - □ Mortar contact has no segment extension of shells
 - □ Without null beams, the bolt hole is bigger and slip may be greater
 - □ Keep contact null beams to keep comparability to explicit simulations
- Merits and drawbacks
 - Usually also good beyond the service load regime during slip
 - Bolt shear failure might be difficult to predict with a single spot weld beam element
 - Flat shell element topologies like the head and the nut are not able to connect the shank with torsion
 - Drilling rotation constrained automatically switched on in implicit to avoid unconstrained degrees of freedom
 - Shells of the head and the nut have a segment extension which might bother in detailed models

Bolt type c)

- General remarks
 - Shank and bolt hole modeled as in type b)
 - Same special contact treatment to capture hole bearing
 - Head and nut modeled with solids instead of shells elements
 - Solids lack rotational degrees of freedom and there is no drilling rotation constraint to connect spot weld beam
 - Head and nut modeled as rigid bodies
 - □ LS-DYNA takes care of fixing rotations in explicit and implicit simulations
 - Head and nut modeled as deformable bodies
 - Beam spider should be used to connect spot weld beam to the solid elements
- Explicit vs. implicit time integration
 - As in type b), the _MORTAR option is advised in implicit simulations together with contact beams
 - Use beam spider to connect spot weld beam with deformable head & nut to avoid singular stiffness matrix
- Merits and drawbacks
 - Similar as for type b) \rightarrow might go the extra mile and model type d)

Bolt type d)

used in

commonly

used

this paper

- General remarks
 - Shank, head and nut are meshed with solid elements
 - Typical are hexahedron elements only or in combination with some pentahedrons
 - Tetrahedrons should be always avoided
 - Sharing nodes or tied contact between head or nut and shank
 - Three common ways to define contact between shaft and bolt hole
 - *CONTACT_AUTOMATIC_GENERAL or *CONTACT_AUTOMATIC_GENERAL_MPP with CPARM8=2
 - Achieve bolt hole sizes consistent with bolt types a) d), i.e. diameter is enlarged by contact null beam diameter
 - □ Contact null beams at hole perimeter (not necessary) can be included when converting from bolt types a) d)
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE with SOFT=2 (segment based contact)
 - $\hfill\square$ Achieve bolt holes with segment extension at shell edge
 - □ Usually meshed bolt hole size consistent with bolt types a) d), i.e. diameter is enlarged by shell thickness
 - *CONTACT_AUTOMATIC_SINGLE_SURFACE with SOFT=2 and SHLEDG=1 in *CONTROL_CONTACT
 - □ Mesh has bolt holes with the diameter they actually have, i.e. no segment extension at shell edge (convenient!)
 - □ Bolt hole size directly compatible to the _MORTAR contact option when using implicit LS-DYNA

Bolt type d)

- Explicit vs. implicit time integration
 - As in type b), the _MORTAR option is advised in implicit simulations
 - Contact null beams can be included
 - Keep compatibility to explicit models which have them included
 - Works also without contact null beams
 - Keep compatibility to explicit model with SOFT=2 and SHLEDG=1
- Merits and drawbacks
 - Bolt failure can be captured well with fine enough mesh
 - Almost all material models can be used with MAT_ADD_EROSION
 - Bolt pre-tension is applied as stress versus an applied force in case of the spot weld beam
 - To compare with types a)-c), make sure to convert with the right cross section area

Initializing the Pre-Tension in the Bolt

Shanks modeled with spot weld beam elements

Initialization of a normal force as pre-tension in the spot weld beam

*INI	TIAL_AXIAI	FORCE_E	BEAM					
\$#	bsid	lcid	scale	kbend				
	100	100						
*DEF	INE_CURVE							
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	100	δ	dtPreStr a	&BltForce				
\$#		a1		01				
		0.0		0.0				
		1.0		1.0				

- bsid: beam set ID containing the spot weld beams to be pre-tensioned
- dtPreStr: parameter defining the initialization time of the pre-tension
- BltForce: parameter defining the pre-tension force
- Bending stiffness of bolt during initialization
 - kbend=0: no bending stiffness
 - kbend=1: beam has bending stiffness (starting with R10)

Shanks modeled with solid elements

Initialization of a normal stress in a cross section of the solid elements

- psid: part set ID containing the solid elements to be pre-stressed
- $\{x, y, z\}$ ct $\{x, y, z\}$ ch: head and tail coordinate of normal vector of the cross section
- BltForce: radius of a circular cross section (provide reasonable value!)
- izshear: flag to activate shear stiffness during pre-stressing phase (was revised for R11)

Shanks modeled with solid elements – cont'd

- izshear: Allow shear stresses to develop during the pre-stressing phase
 - Yields more realistic distribution of the normal stresses
 - Normal stress distribution in the bolt at equilibrium using LS-DYNA implicit (R11)
 - izshear=0: yields homogeneous normal stress of 0.38 GPa
 - izshear=2: yields inhomogeneous normal stresses averaging 0.38 GPa over the cross section

- Revised for implicit in current developer versions (SVN>123041, including R11 branch)
 - For explicit analysis this will be available as izshear=2 as of R11 (due to backward compatibility reasons)
 - For implicit izshear=1 and izshear=2 are synonymous

Shanks modeled with solid elements – cont'd

- Avoid pentahedron elements in the shank
 - Normal stress distribution might be disturbed
 - Cause convergence problems during implicit simulations with some LS-DYNA releases (R9.2, R10)

- Allow for large enough elements to account for initial contraction
 - Elements with a pre-stress application "shrink" until equilibrium is reached
 - Head and nut need to travel far enough to be in contact with the sheets
 - Best to account for this such that the deformed configuration leads to a nice mesh

Initializing the Pre-Tension in the Bolt

General rules of thumb during pre-stress initialization

- Initial gap size
 - The smaller the gap the better!
 - Head and nut impact causes
 - Stress waves in the rest of the model (noise)
 - Convergence problems in implicit simulations
- Skew bolt shaft
 - Can cause an initial slip of the connection
 - Bolt may end up tilted causing
 - Stress concentration
 - Reduction in clamping force
- Forgot to define the right friction in the contact card?
 - Here: static friction of 0.1

Initializing the Pre-Tension in the Bolt

General rules of thumb during pre-stress initialization

Pre-stress application time

If the tension initialization ends before equilibrium is reached, the desired bolt force is not reached

Public use

chnology Corp.

Initializing the Pre-Tension in the Bolt

Bolts Modeled with LS-DYNA / Implicit

Perform static or dynamic simulation?

- Start with dynamic simulation to avoid matrix singularities
 - Initially the bolt is loose which leads to unconstrained rigid body modes (bad for convergence)
 - Damped Newmark scheme will help convergence greatly calms the system during pre-tensioning
- Switch to static simulation after bolt is pre-tensioned
 - Over time, dynamic effects can be removed to fully calm the system
- Dynamic parts may be switched back on, if needed (i.e. slipping with loads beyond service loads)

General implicit settings

General nonlinear solver settings

*cc	NTROL_IMP	LICIT_GENE	RAL					
\$#	imflag	dt0	imform	nsbs	igs	cnstn	form	zero_v
	1	&dt0						
*CC	NTROL_IMP	LICIT_SOLU	TION					
\$#	nsolvr	ilimit	maxref	dctol	ectol	rctol	lstol	abstol
	12	6	12					1.0e-20
\$#	dnorm	diverg	istif	nlprint	nlnorm	d3itctl	cpchk	
	1			3	4	1		
\$#	arcctl	arcdir	arclen	arcmth	arcdmp	arcpsi	arcalf	arctim
\$#	lsmtd	lsdir	irad	srad	awgt	sred		

- imflag: implicit/explicit analysis type
- dt0: initial time step size
- abstol: remove absolute tolerance
- d3itctl: output convergence to d3iter

- nsolvr: recommended nonlinear solver
- ilimit: Iteration limit between automatic stiffness reformations (problem dependent)
- maxref: Stiffness reformation limit per time step (problem dependent)
- Inorm: displacement norm increment for convergence as a function of displacement over current step
- nlnorm=4: consider sum of translational and rotational degrees of freedom

Auto time step size and key points

Automatic time step size control

*COI	NTROL_IMP	LICIT_AUTO						
\$#	iauto	iteopt	itewin	dtmin	dtmax	dtexp	kfail	kcycle
	1	40	10		-24			
*DEI	FINE_CURV	E						
\$#	lcid	sidr	sfa	sfo	offa	offo	dattyp	lcint
	24							
\$#		al		01				
	&dtP	reStrss		&dtMax				
		&tLoad		&dtMax				

- iauto: flag to switch on/off automatic time step control
- itopt: optimal number of iterations
- itwin: optimal iteration bandwidth
- dtmin: lower time step boundary (default dt0/1000)
- dtmax: upper time step boundary (<0 it's a curve ID with key points)
- Definition of key points

STC

hnology Corp.

Important points in time that need to be reached exactly

Bolts modeled with LS-DYNA / Implicit

Presented Example for Bolt Types a) to d)

Boundary conditions

- Boundary conditions
 - Bolt pre-tension
 - Spot weld beam: $F = \sigma A = 28.8 \,\mathrm{kN}$
 - Solids: $\sigma = 0.3841 \,\text{GPa}$ $A = 74.9859 \,\text{mm}^2$
 - Here: solid pre-stress yields equivalent pre-tension
 - Displacement u_x on one side
 - Fixed in space on other side

(Tightening Torque for <u>Class 4.6</u> Bolts (METRIC COARSE)							
Dali	Throad	*when µ =	= 0.10	*when µ = 0.14			
Diameter x Pitch	Stress Area mm ²	Tightening Torque	Pre-load	Tightening Torque	In Pre-load		
M5 x 0.8	14.2	5.2	7.4	6.5	7.0		
M6 x 1	20.1	9.0	10.4	11.3	9.9		
M8 x 1.25	36.6	21.6	19.1	27.3	18.1		
M10 x 1.5	58.0	43	30.3	54	28.8		
M12 x 1.75	84.3	73	44.1	93	41.9		
M14 x 2	115	117	60.6	148	57.5		
140 0	457	100	00.0	000	70.0		

STC

Deformation behavior with explicit simulations

- Similar deformation behavior for all bolt types
- Implicit simulations show less vibrations

Von-Mises stress with implicit simulations

Bolt type a) shows no slip and thus no hole bearing

Public use

Plastic strains with explicit simulations

Bolt type a) shows no slip and thus no hole bearing

Public use

Force displacement curves and bolt forces

- All bolt types play initially in the same ball park
- Implicit sometimes behaves different than explicit
 - Different contact treatment, also in terms of stiffness and thickness
 - Might need further investigation

Conclusions

- Many possibilities to model bolts in LS-DYNA
- Many things to keep in mind
 - Keep parts as close together as possible before pre-tensioning
 - Provide reasonable time for pre-tension (>= 1ms)
 - Account for extra space in the bolt hole when using contact null beams
 - When using solid elements in the shaft
 - Try to avoid pentahedrons in the shaft
 - Use new izshear option in *INITIAL_STRESS_SECTION
- Explicit as well implicit works fine
 - Implicit time step independent of element size
 - Might be beneficial for longer time spans
 - Attention is needed when comparing results

Thank you for your attention!

