

Dynamic Evaluation of Vehicle Roof Systems under Crash Scenarios: An approach to early detection of potential concerns.

Mercedes-Benz Research & Development India Pvt. Ltd.

Presenter: Dhanaji Patil

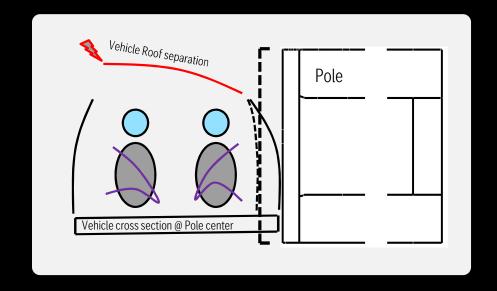
Co-Authors: Anand Malipatil, Rajesh Reddy, Naresh Kulkarni, Roopesh Chodankar, Sunil Raveendran.

Bengaluru, 2022.

Contents

- 1. Introduction
- 2. Methodology
- 3. Comparison: Sub-system v/s Full vehicle
- 4. Description of proposed sub-system setup (digital)
- 5. Loading and constraints
- 6. Method Robustness
- 7. Conclusion & Future Scope

Introduction


SIDE POLE IMPACT: One of the challenging load case to design Roof systems

PROBLEM

 Loss of structural integrity – Separation of structural parts of the panoramic roof system in an event of side pole crash.

CHALLENGES

- Time: Limited time availability to develop solutions during later phases of vehicle development that might lead to delays.
- Cost: Last minute design changes leading to retooling and incur additional increased cost.

How can we minimize such scenarios in future?

With proposed dynamic sub-system setup focusing on "First time right Hardware"

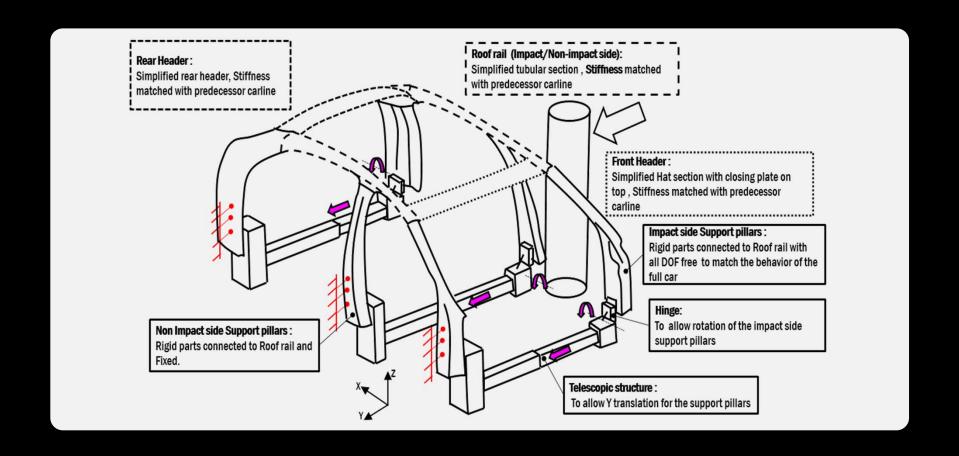
Methodology

Sampling of existing CAE Roof specific results (forces/energies/deformations)

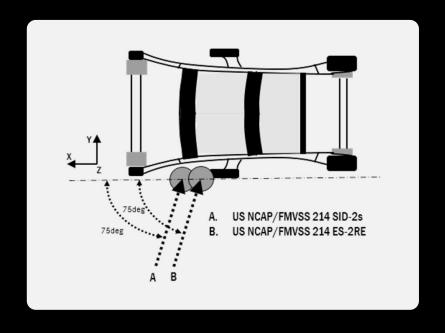
Concept Setup
resembling
BiW behavior similar to
that in full vehicle

Impactor Energy & mass calibrated equivalent to that experienced by respective full vehicle

Setup replicating BiW behavior similar to full vehicle


Comparing the measuring parameter's across different carlines for robustness of method

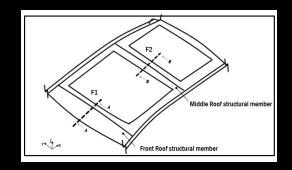
Comparison: Sub-system v/s Full Vehicle

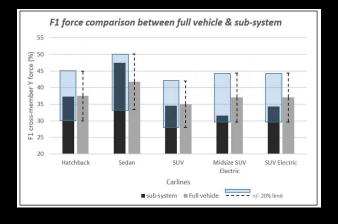

Full vehicle setup

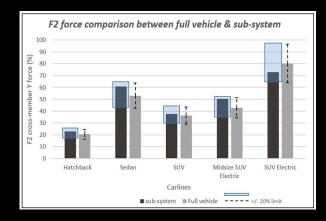
Sub-system setup

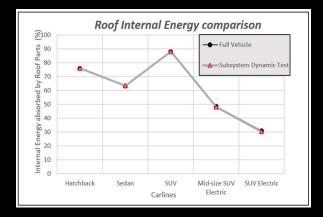
Description of Proposed sub-system setup (Digital)

Loading and Constraints

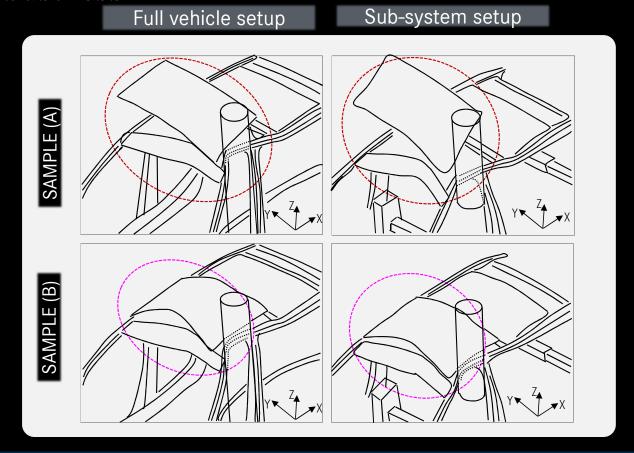



Test	Impact Angle (deg.)	Reference regulation/Rating	X Co-ordinate of the pole center before impact	Mass Moving Pole (kg)	Velocity of the pole (Kmph)
1	75	US NCAP/FMVSS 214 SID-2s	Same as Head Center of positioned 5 th percentile dummy	М	V
2	75	US NCAP/FMVSS 214 ES-2RE	Same as Head Center of positioned 50 th percentile dummy	М	٧


Method Robustness


PARAMETERS COMPARED

- Objective: Forces on principal Roof cross members
 - Internal energies absorbed by Roof structure
- Subjective: Overall deformation of the Roof structure



Force and energy show close correlation measured along different carlines which makes it a robust method

Method Robustness

Proposed dynamic sub-system simulation shows comparable roof deformation to that of full vehicle simulation

Conclusion and Future Scope

- Sub-system evaluation shows comparable energy, forces and deformation mode of the Roof system to that of full vehicle evaluation.
- Proposed Sub-system can be used to evaluate functional performance of the roof system in the early development stages.
- Method needs to be experimentally validated to improve the reliability of this methodology, this is seen as the future scope of the present work.

THANK YOU