FAILURE OF CFRP AND SFRP COMPONENTS IN AUTOMOTIVE AND AEROSPACE FIELDS

STRUCTURAL ENGINEERING - Application

Ir Juergen KAPFHAMER; Dr Benoit BIDAINE ; Ir Sylvain CALMELS

Continuous fiber composites exhibit a complex behavior

Various failure modes at various levels

Properties anisotropy

Progressive failure predicts laminate failure in a realistic way

- Strength is monitored in multiple directions
 - Damage is triggered when the strength value is reached (Failure)
 - Damage occurs only in the direction where failure is reached

- Stiffness degradation based on damage variables
 (Matzenmiller et al., 1995)
- Succession of failure events in different ply families

e.g., for tensile test on quasi-isotropic laminate with instantaneous damage

Comparing Failure Models

- Standard failure
 - Elastoplastic resin
 - Elastic carbon
 - Standard failure model with element deletion based on measured strength in all directions of load
 - Differentiation between compressive & tensile strength

п

MSC Software Company

For all directions

Element deletion \rightarrow brutal loss of stiffness in all directions

Failure prediction is driven by the failure indicators

Parameters Axial tensile strength (X_t): Axial compressive strength (X_c): In-plane tensile strength (Y_t): In-plane compressive strength (Y_c): Transverse shear strength (S): In-plane shear strength (S_I):

Failure indicator outputs	
f_i such that $\mathcal{F}_i({oldsymbol \sigma}/f)=1,$ with:	
$\mathcal{F}_A(oldsymbol{\sigma}) = rac{\sigma_{11}^2}{X_t^2} + rac{\sigma_{12}^2}{S^2} ext{ if } \sigma_{11} > 0, \ 0 ext{ otherwise}.$	
$\mathcal{F}_B(oldsymbol{\sigma}) = -rac{\sigma_{11}}{X_c}$ if $\sigma_{11} < 0, \ 0$ otherwise.	
$\mathcal{F}_C(oldsymbol{\sigma}) = rac{\sigma_{22}^2}{Y_t^2} + rac{\sigma_{12}^2}{S^2} ext{ if } \sigma_{22} > 0, \ 0 ext{ otherwise}.$	
$\mathcal{F}_D(\boldsymbol{\sigma}) = \frac{\sigma_{22}^2}{4S_I^2} + \frac{\sigma_{12}^2}{S^2} + \left[\left(\frac{Y_c}{2S_I} \right)^2 - 1 \right] \frac{\sigma_{22}}{Y_C} \text{ if } \sigma_{22} < 0, \ 0$) otherwise.
	ENGINEER

Comparing Failure Models

Evolved progressive failure

- Elastic resin and carbon
- Differentiation between compressive & tensile strength
- Evolved progressive failure based on the cumulative effect of 4 failure criteria to yield a specific failure behavior per failure mode
 - Damage is cumulative but element deletion is only triggered by longitudinal fialure

Evolved progressive failure \rightarrow anisotropic definition of the damage evolution with crack propigation

Both Model Calibration Based on the same Behavior Targets at Single Ply Level

C X Software Compa

Both Model Calibration Based on the same Behavior Targets at Single Ply Level

Focus on shear behavior

Application on a sub-component

- Material
 - UD composite : Carbon Fibers + Epoxy Resin
- Performance
 - Crash and strength : failure prediction and post failure behavior
- Model
 - 3 point bending case on a sub component model, similar to a pole side crash
 QUAD SHELL (2 to 10mm)

Application on a sub-component

Results : Standard failure shows unrealistic deformation scenario

Application on a sub-component

Results : reaction force and dissipated energy

Standard failure underestimates the maximum force at failure by 30% compared to progressive failure

Post failure behavior of progressive failure model shows a higher residual stiffness

Standard failure underestimates the dissipated energy with a ratio greater than 4 compared to progressive failure

SFRP shows an anisotropic behavior dependent on the fiber organization

• Dependency for Stiffness as well as Strength

The manufacturing process induce the fiber organization of the component

Heterogeneous local behavior

Application on a stone impact case on an engine cover

Comparison of 2 material modelizations

Application on a stone impact case on an engine cover

• Results : taking into account anisotropic behavior and the fiber orientation tensor through the part influence the impact scenario

Heterogeneous anisotropic (failure indicator)

Application on a stone impact case on an engine cover

Results : reaction force and stone velocity

Isotropic material model underestimates the maximum force at failure by 47% compared to anisotropic material model taking into account the fiber orientations The anisotropic material model shows a much highest capacity of energy absorption during the impact.

Reaction Force vs Time

Conclusions

CFRP

- A non linear anisotropic material model including a progressive failure definition based on lamina behavior exists to predict
 - The anisotropy of the stiffness, the failure initiation, the damage evolution
- Coupled FEA is available with all current FE solvers to predict in a physical manner failure and post failure behavior of a structure

SFRP

- A non linear anisotropic material model taking into account the local fiber orientation of the material exists to predict
 - The anisotropy of the stiffness and of the failure initiation
- The fiber orientation field from the process simulation can be mapped on the structural mesh

19

Coupled FEA is available with all current FE solvers to predict in a physical manner failure and post failure behavior of a structure

USERS' MEETING 2014

The material modeling conference

Tools, Solutions and Expertise for the end-to-end analysis of Chopped and Continuous Fiber Composite Materials and Structures.

The Highlights of DigimatUM'14 are:

- Progressive Failure analysis of CFRP coupon to Aero Structures
- End-to-end finite element analysis of material RVE
- Robust, Fast and Easy analysis of reinforced plastic parts
- Modeling of Discontinuous Fiber Composites (DFC)

Further info & registration → www.e-Xstream.com