MODELING OF FIBER-REINFORCED PLASTICS TAKING INTO ACCOUNT THE MANUFACTURING PROCESS

Cherry Ann Reclusado Ernst-Mach-Institut, Freiburg German LS-DYNA Forum 9th June, 2016

OVERVIEW

- Introduction and motivation
- Modeling method
- Validation
- Summary and conclusion

Introduction and motivation

The challenge of a modern lightweight construction material

Special requirements on a construction material in the automotive industry

- Decrease vehicle weight
- Absorb kinetic energy / stay intact after crash
- Large production volume

[2]

¹Picture: Eco-marathon Shell, License: Free Art License 1.3

Introduction and motivation FE-simulation in the automotive industry

Structural simulation

Process simulation (injection molding)

- Reduce cost and time
- Virtual manufacturing and component testing
 - Predictive power depends on appropriate modeling of load case, geometry and <u>material model</u>

Modeling of long glass fiber reinforced plastic (GFRP)

Characteristic due to production process

Sample plate

- Different flow directions in component
 - \rightarrow Mechanical behavior depends on position
- Flow velocity varies between surface and core
 - \rightarrow Various layers are formed

Modeling of GFRP Fiber orientation and degree of freedom

Modeling of GFRP Methodology of the realized integrative simulation

Modeling of GFRP Methodology of the realized integrative simulation

Elastic properties of various orientation states From UD to real material

- Property of UD-material and orientation tensor known
- Calculation of mechanical properties of layer with arbitrary orientation state
- One material card per class

*S.G. Advani, C.L. Tucker, The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. Journal of Rheology, 31(8), 751-784, 1987 9 © Fraunhofer EMI

Elastic properties of various orientation states From UD to real material

Parallel connection of various layers yields specimen property

Elastic properties of various orientation states From UD to real material

Solving of the inverse problem: From characterization test to UD-material

Plastic and failure parameters Material parameters for MAT_108 in LS-DYNA

Simulation of tensile tests in 0°-, 45°-, and 90°-direction

Displacement

- Plastic parameters determined using LS-OPT
- Failure modeled with MAT_ADD_EROSION
- For all material classes the same plastic and failure parameters are used

Modeling of GFRP Methodology of the realized integrative simulation

Mapping of orientation and degree of anisotropy Flow-chart of developed mapping-tool

Modeling of GFRP Methodology of the realized integrative simulation

Validation of the method Dynamic three-point bending test

Test set-up

Simulation model

Haul-off speed 7000 mm/s

Validation of the method

Force-displacement curve and deformation behavior

- Displacement Good agreement of experiment and simulation
- Simulation sensitive to additional numerical and friction parameters

Impact of considering degree of anisotropy Comparison with less complex modeling approaches

Considering only fiber orientation

- Without Advani and Tucker / Only one material card
- Elastic and plastic parameters derived directly from characterization tests
- Tensile tests in 0°-direction \rightarrow Parameters in longitudinal direction
- Tensile tests in 90°-direction \rightarrow Parameters in transversal direction

Isotropic material behavior

Material parameters derived from average stress-strain curves in 0°- and 90°-direction

→ Simulation of dynamic three-point bending test using same values for additional numerical and friction parameters

Impact of considering degree of anisotropy Simulation considering only fiber direction

- Upper part of bottom wall remains intact longer
- Upper rib is not bent

Impact of considering degree of anisotropy Simulation using isotropic material behavior

- Upper part of bottom wall fails in a larger region
- Edge between upper and bottom wall is not impressed

Summary and conclusion

- Approach for considering fiber orientation distribution in material model
- Development of a mapping tool
- Validation by means of dynamic three-point bending test
- Impact of degree of anisotropy on simulation results

