LS-DYNA implicit Workshop nonlinear Solver

Alexander Gromer, Dr. Tobias Erhart, Dr. Thomas Borrvall Bamberg, 11.10.2016

Copyright: Dynamore GmbH, Industriestr. 2, 70565 Stuttgart

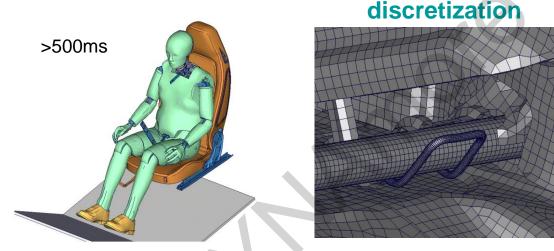
Outline

© Dynamore GmbH 2016

> Intro

- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

Introduction



© Dynamore GmbH 2016

Motivation: Why implicit?

pre-stressed, quasi statically loaded structures

long duration analysis

different time scales in process

e.g. static loading followed by transient loading or transient loading followed by static loading

LS-DYNA provides explicit and implicit solution schemes one code – one license - one data structure - one input / output

different scales in

Introduction

© Dynamore GmbH 2016

LS-DYNA implicit features

Basic equipment

. . .

- Newton, Quasi-Newton, arclength methods
- direct and iterative solvers
- automatic step size adjustment
- Newmark methods with consistent mass matrix

Introduction

© Dynamore GmbH 2016

LS-DYNA implicit features

Outstanding features

- one code one license one input one output
- switching between implicit and explicit in one run
- high scalability through MPP
- mortar contact
- post-processing of residual (out-of-balance) forces

Outline

© Dynamore GmbH 2016

> Intro

R9 Solver

- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

LS-DYNA R9.0.1

© Dynamore GmbH 2016

Latest official release: R9.0.1

- Release R9.0.1 from August 2016
- Contains several new features in the areas of solid mechanics, multiphysics, and implicit
- Details: <u>http://www.dynasupport.com/news/ls-dyna-r9.0.1-r9.109912-released</u>
- Highly recommended for implicit analyses

© Dynamore GmbH 2016

General philosophy of LS-DYNA implicit

Increased accuracy implies better convergence

LS-DYNA R9.0.1

© Dynamore GmbH 2016

*CONTROL_ACCURACY

Card 1	1	2	3	4	5	6	7	8
Variable	OSU	INN	PIDOSU	IACC				
Туре	I	I	I	I.				
Default	1	2	0	0				

Implicit accuracy option IACC=1

- Higher accuracy in selected material models (24, 123)
 - Fully iterative plasticity, tightened tolerances, smooth failure
- Strong objectivity and consistency in selected tied contacts
 - Physical (only ties to degrees of freedoms that are "real")
 - Finite rotation
- Strong objectivity in selected element types
 - Finite rotation support for hypoelasticity

Outline

© Dynamore GmbH 2016

> Intro

- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

© Dynamore GmbH 2016

CCSA (former NCAC) Toyota Yaris model

- ~ 1.2 mio nodes
- ~ 1.2 mio elements
- 1 global contact
- 1 global tied contact (spotweld)

© Dynamore GmbH 2016

Preparing the Yaris model for LS-DYNA implicit

- The model has a typical car crash model setup
- Idea: Do as less modifications as necessary to make the model "implicit ready" and keep the explicit model structure/philosophy
- 3 step approach:
- (1) Eigenvalue analysis
- (2) "No load run"
- (3) Small test load (e.g. gravity load)

© Dynamore GmbH 2016

General model modifications:

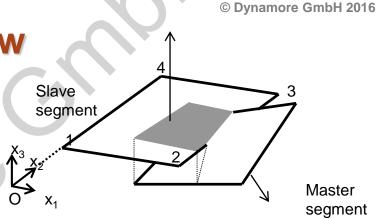
- Changed control cards (for explicit analysis) to crash model recommendation
- Added *PART_CONTACT with appropriate OPTT to all parts in contact definition
 - OPTT = 0.9 * true shell thickness (secant errors)
 - Some volume parts are only represented by shell surfaces. In order to match the part masses the shells have high thickness values.
- Depenetration of the model

Removed the seat foam parts (not needed for the following studies)

© Dynamore GmbH 2016

Implicit subset of control cards

						· ·			
*C0	NTROL_ACC	URACY							
\$	osu	inn	pidosu	iacc					
	1	4		1					
*C0	*CONTROL_IMPLICIT_GENERAL								
\$	imflag	dt0							
	1	0.01							
*C0	NTROL_IMP	LICIT_SOLU	TION		•				
\$	nsolvr	ilimit	maxref	dctol	ectol	rctol	lstol	abstol	
	12	6	15	2.5e-3				1.e-13	
\$	dnorm	diverg	istif	nlprint	nlnorm	d3itctl			
	1			2		1			
*C0	NTROL_IMP	LICIT_AUTO							
\$	iauto	iteopt	itewin						
	1	25	5						
*C0	NTROL_IMP	LICIT DYNA	MICS						
\$	imass	gamma	beta						
	1	0.55	0.28						

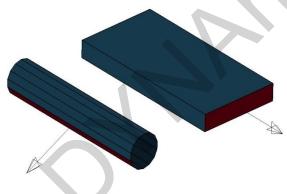

© Dynamore GmbH 2016

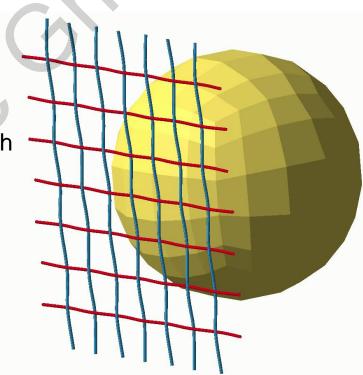
Contact definition

*CONTACT AUTOMATIC SINGLE SURFACE MORTAR										
\$#	ssid	msid	sstyp		sboxid	mboxid	spr	mpr		
	1000002	0	2							
\$# 0	fs .200000	fd	dc	VC	vdc	penchk	bt	dt		
\$#	sfs	sfm	sst	mst	sfst	sfmt	fsf	vsf		
\$#	soft	sofscl	lcidab	maxpar	sbopt	depth	bsort	frcfrq		
\$#	penmax	thkopt	shlthk	snlog	isym	i2d3d	sldthk	sldstf		
\$#	igap	ignore 2	dprfac	dtstif	unused	unused	flangl			
\$										
		1								

Mortar Contact: brief overview

- Penalty based segment to segment contact
 - Finite element consistent force
 - Continuous force displacement relation
- Parabolic constitutive law
 - Continuous stiffness displacement relation
- Relatively expensive
 - Intended for implicit analysis, slow in explicit analysis (at this time)
 - To the best of our knowledge best total implicit contact algorithm

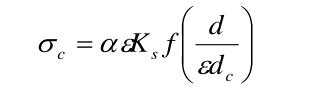




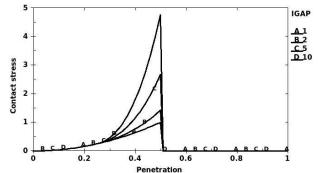
© Dynamore GmbH 2016

Mortar Contact: beams and shell edges

- Flat edge contact always apply in automatic contact
- Beam lateral surfaces are discretized into segments with mortar contact applied to each segment
- From R9: Support "rolling beams"



© Dynamore GmbH 2016


 $\frac{1}{4\varepsilon} \le x$

Mortar Contact: stiffness and release

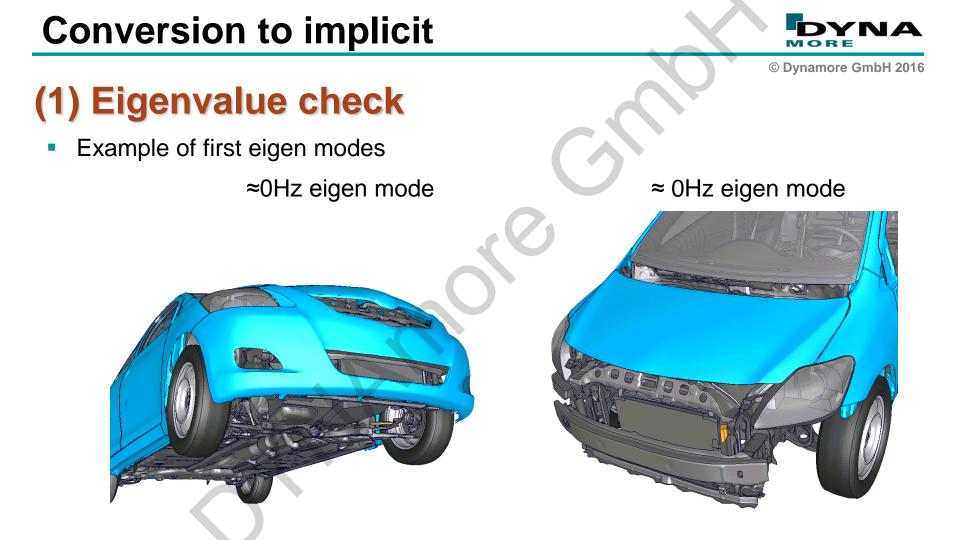
- $\alpha = stiffnessscaling factor(SFS*SLSFAC)$
- $K_s = \text{stiffnessmodulus of slave segment}$
- d = penetration distance
- $\varepsilon = 0.03$
- d_c = characteristic length

cubic function that depends on IGAP

 Contact is released if penetration is larger than half characteristic length after equilibrium

f(x) =

Information of penetration may be requested

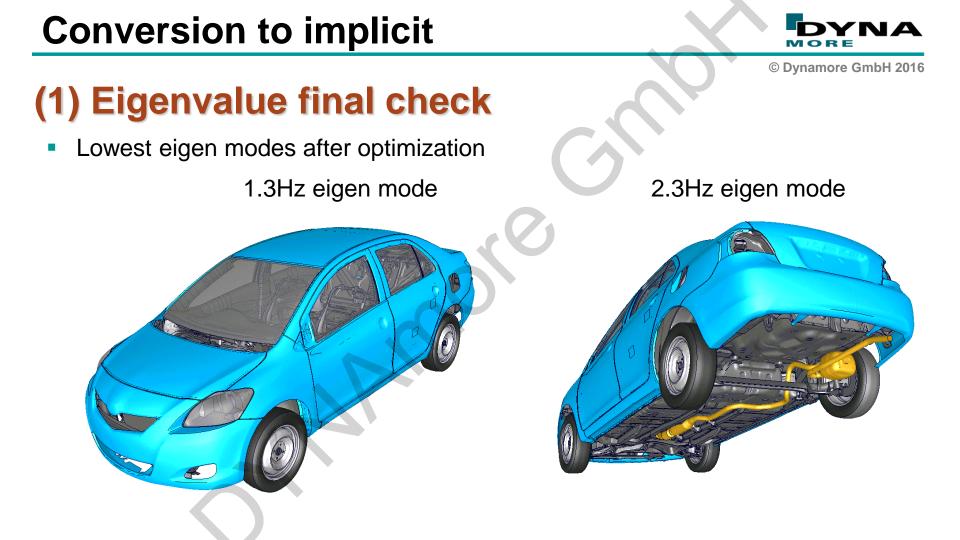


© Dynamore GmbH 2016

(1) Eigenvalue check

- Basically a check of the stiffness matrix
- only a linearized version of the model is considered
- Eigenvalues must be ≥ 0 (if we want to run a static analysis EVs > 0)

\$ *CONTROL_IMPLICIT_EIGENVALUE \$ neig 20 \$	ground ls-dyna mpp.109095 d date 07/06/2016 results of eigenvalue analysis: problem time = 1.00000E-02					
	(all frequer	ncies de-shifted)			
eigout (ASCII)	MODE 1	EIGENVALUE -2.439537E-03	freque RADIANS 4.939167E-02	ncy CYCLES 7.860929E-03	PERIOD 1.272114E+02	
d3eigv	2 3 4 5	-8.982204E-04 -7.700314E-06 6.172319E-03 1.321770E+02	2.997032E-02 2.774944E-03 7.856411E-02 1.149683E+01	4.769925E-03 4.416460E-04 1.250387E-02 1.829777E+00	2.096469E+02 2.264257E+03 7.997527E+01 5.465148E-01	
	6 7 8	1.509247E+02 2.477678E+02 4.077650E+02	1.228514E+01 1.574064E+01 2.019319E+01	1.955241E+00 2.505201E+00 3.213846E+00	5.114460E-01 3.991696E-01 3.111536E-01	



© Dynamore GmbH 2016

(1) Model modifications:

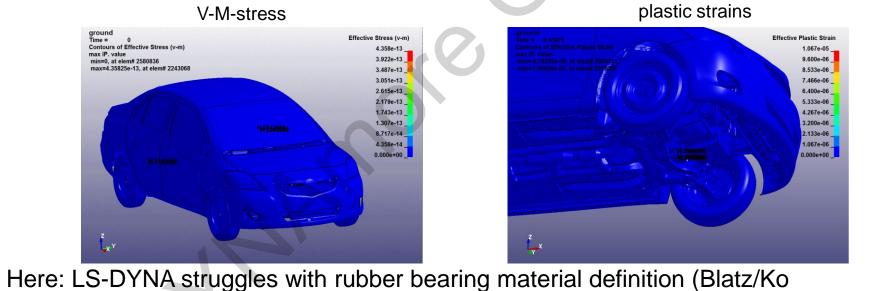
- Removed unsupported rotation d-o-f of wheels by adding small frictional moment to the wheel bearings with *CONSTRAINT_JOINT_STIFFNESS
- Removed unsupported rotation d-o-f steering linkage by adding small frictional moment to the wheel bearings with *CONSTRAINT_JOINT_STIFFNESS
- Fixed some of the engine parts properly

(2) No-load run

- All definitions in the model are considered
- For a well defined model model this means:

Equilibrium!

Instant convergence!


- In case of slow convergence there might be
 - Still penetrations

Bad defined materials

No load

© Dynamore GmbH 2016

replaced by *MAT_ELASTIC with corresponding parameters

(2) No-load run

rubber)

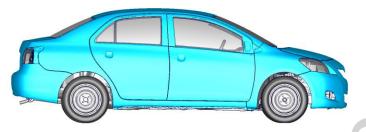
Visualize stresses, plastic strains, residual forces, ...

Conversion to implicit

© Dynamore GmbH 2016

© Dynamore GmbH 2016

(3) Small test load


- Final quality check for the model
- Expect plausible results
- Expect "Normal Termination"

© Dynamore GmbH 2016

Shock absorber loading setup

Generated the geometry of an unloaded under-carriage

Added a rigid ground model with

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_ID										
100t	100tires2ground									
\$# ssid	msid	sstyp	mstyp	sboxid	mboxid	spr	mpr			
200008	10000001	2	3							
\$# fs	fd	dc	VC	vdc	penchk	bt	dt			
0.100000										
\$# sfs	sfm	sst	mst	sfst	sfmt	fsf	vsf			
0.100000			-		-					

© Dynamore GmbH 2016

mplicit s

Static shock absorber loading

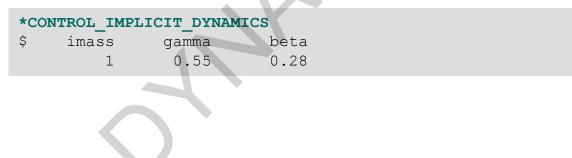
three load steps

- 1) inflate tires
- 2) Initiating contact
- 3) gravity load

© Dynamore GmbH 2016

Static shock absorber loading

Solution in 73 steps 5.5 hours on 16cores


© Dynamore GmbH 2016

Dynamic shock absorber loading setup

Added ground with

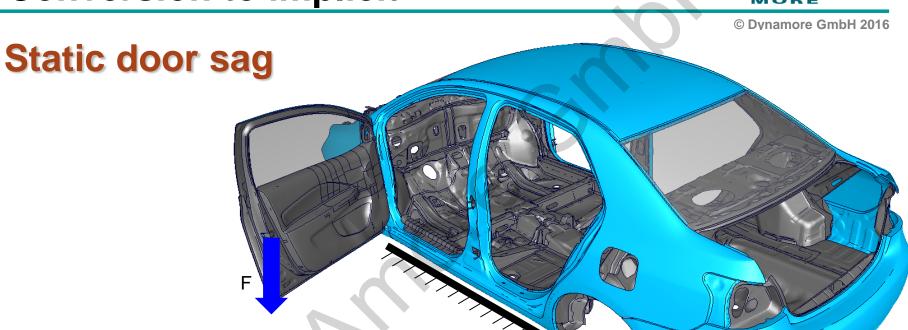
4	*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR_ID										
		100t	ires2ground								
ć	\$#	ssid	msid	sstyp	mstyp	sboxid	mboxid	spr	mpr		
	2	800000	10000001	2	3						
Ś	\$#	fs	fd	dc	VC	vdc	penchk	bt	dt		
	Ο.	100000									
Ś	\$#	sfs	sfm	sst	mst	sfst	sfmt	fsf	vsf		

Added implicit dynamics control card

© Dynamore GmbH 2016

Dynamic shock absorber loading

- 3 seconds simulation time Slight numerical damping
- 1) inflate tires
- 2) gravity load

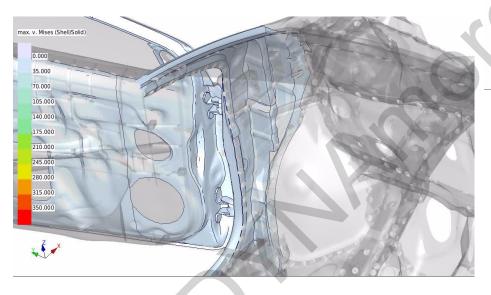


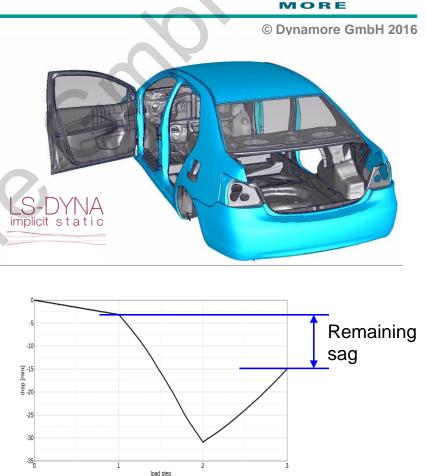
© Dynamore GmbH 2016

Dynamic shock absorber loading

Solution in 103 steps 7.5 hours on 16cores

two load steps
 (1) gravity load
 (2) Door load


© Dynamore GmbH 2016


Static door sag: modifications

- Removed non-necessary parts of the model
- Loadcase definitions
- Local mesh refinement
- Hinge brackets with solid elements

ΝД

© Dynamore GmbH 2016

disp

Roof crush

- Removed non-necessary parts of the model
- Impactor with prescribed motion
- Applying load within 2 sec (Termination time 2.2 sec)

Conversion to implicit INA MOR © Dynamore GmbH 2016 **Roof crush** Takes about 20h on 10cores 25 25 20 20 20 15 10 20 40 60 80 100 120 140 disp [mm]

Conversion to implicit

© Dynamore GmbH 2016

Remarks

- Material definitions and connection modelling is not on most OEMs state-ofthe-art level. However, it has on a quite detailed level of modeling. For the investigations of this project all required parts and model functionality was present in the baseline model.
- Model size is adequate but not as large as OEMs current models (up to 7mio elements)
- Conversion process may look straight forward but in deed it is not.

Outline

© Dynamore GmbH 2016

> Intro

- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit

LS-DYNA implicit with AVX2

- Convergence behavior monitoring
- Summary

© Dynamore GmbH 2016

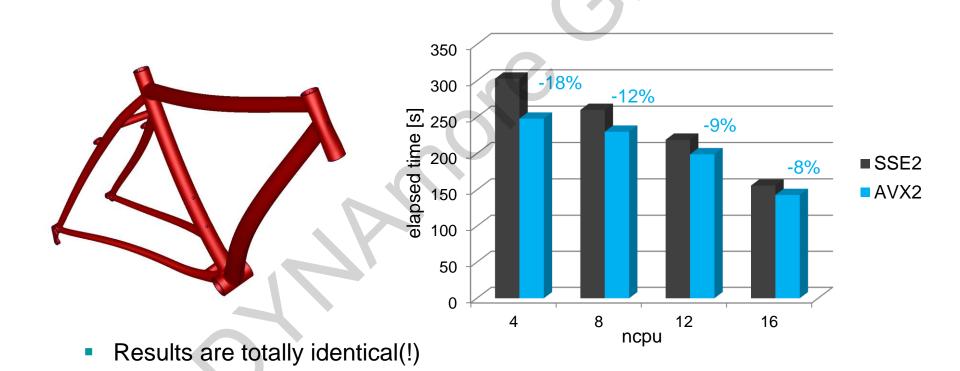
Advanced Vector eXtensions

- Extensions to the x86 instruction set architecture
- Introduced 2013 with the Haswell processor generation
- Includes for example FMA3: solves

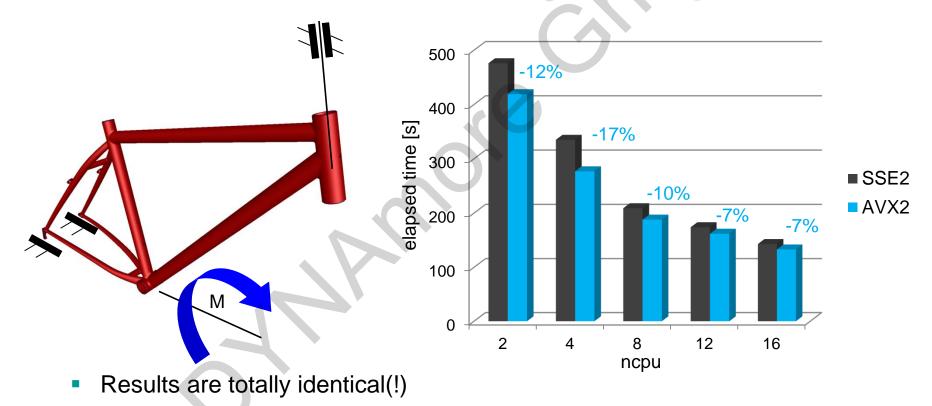
 $(A^*B)+C=D$

in a single CPU-cycle

 AMD's counterpart: Carrizo with Excavator microarchitecutre (Released end of 2015)

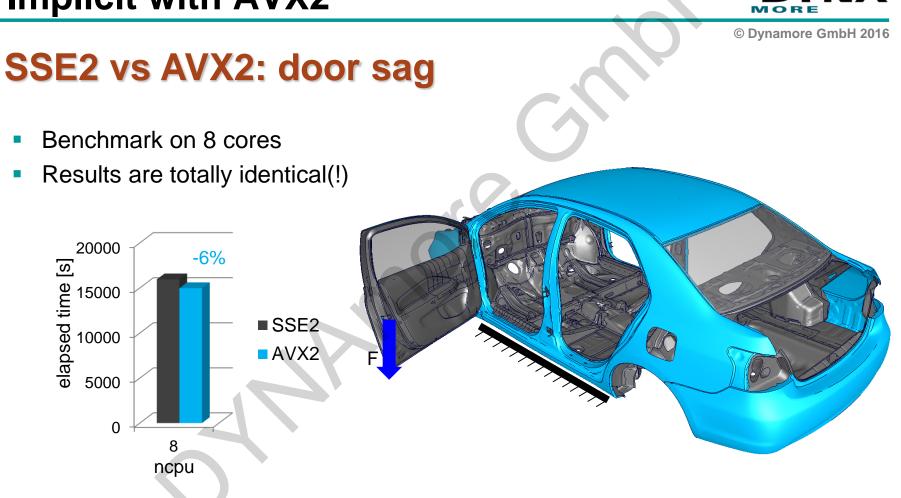

Is-dyna_mpp_d_R9_107411_x64_redhat54_ifort131_sse2_platformmpi Is-dyna_mpp_d_R9_107411_x64_redhat54_ifort131_avx2_platformmpi

© Dynamore GmbH 2016


SSE2 vs AVX2: Eigenvalue analysis simple model

© Dynamore GmbH 2016

SSE2 vs AVX2: transient analysis simple model



© Dynamore GmbH 2016

SSE2 vs AVX2: transient analysis HPM settling

- Benchmark on 8 cores
- Results have slight differences (too??) loose tolerances
- Different steps during solution

ΝА

Outline

© Dynamore GmbH 2016

> Intro

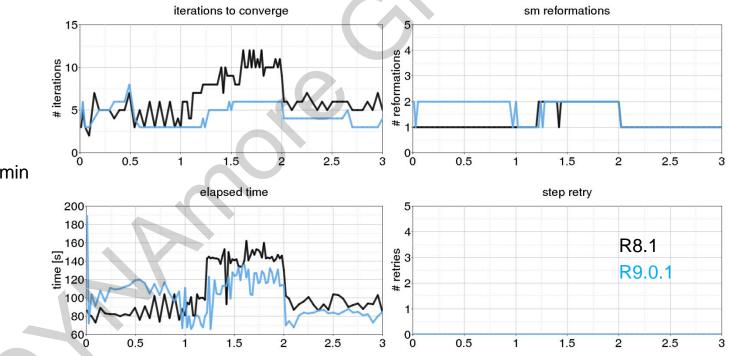
- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

DYNAtool: check-convergence

© Dynamore GmbH 2016

Providing convergence related information

- Included in the DYNA-tools package
- Greps information about convergence behavior form d3hsp
- Prints out table view of information like interations, retry, ...
- Generates csv-file for postprocessing with EXCEL, HG, ...


scan	ning d3h	sp													
1	STEP		TIME	L	step size		#iter		#SM Reform	I	#RETRY		elaTime[s]	1	
	1		1.0000E+00	1	1.0000		2		0		0		18	1	
1	2	1	2.5849E+00		1.5849	1	2		0	1	0		12	1	
1	3	1	5.0968E+00	1	2.5119	1	2	-1	0	1	0		13	1	
1	4		9.0779E+00	1	3.9811	1	12	-1	1	1	0		100	1	
۱ 	5	1	1.5387E+01	I	6.3091	I	7	I	0	Ι	0	I	41	I	
1	39	A.	1.5516E+03	I	271.8000	1	16	T	3	Ι	0	1	112	I	
1	40	ΠÌ	1.9825E+03		430.9000	1	37	1	5	1	0		247	1	
1	41	1	2.0000E+03		17.5000	1	23		2	1	0	1	144	1	
	42	1	2.0928E+03		92.8000	1	14	1	1	1	2		209	1	
	43	1	2.2400E+03		147.2000	1	24	1	2	1	0		763	1	
1	44	1	2.3482E+03		108.2000	1	26	1	2	1	1		588	1	
1	45	1	2.4278E+03		79.6000	1	30	1	2	1	1		506	1	
	46	1	2.5540E+03		126.2000	1	39	1	3	1	0		917	1	
1	47	1	2.6802E+03	1	126.2000	1	26	1	2	1	0		671	1	
1	48	1	2.7233E+03		43.1000	1	30	1	2	1	2		246	1	
1	49	1	2.7550E+03		31.7000	1	59	1	5	1	1		428	1	
L	50	I	2.7709E+03	I	15.9000	T	84	I	8	I	0	I	536	I	
	63	1	3.7730E+03		316.9000	1	2		0		0	1	17	1	
1	64	1	4.0000E+03		227.0000	1	2		0	1	0		16	1	
1	65	1	4.5024E+03		502.4000	1	28		5	1	0	Ì	189	1	
	66		5.0000E+03		497.6000		15		4		0		131		
							1579		202		11		14633		_
				I	75.7576		23.9	1	3.1	1	0.2		221		2

DYNAtool: check-convergence

© Dynamore GmbH 2016

Example: Yaris door sag R8.1 vs R9.0.1

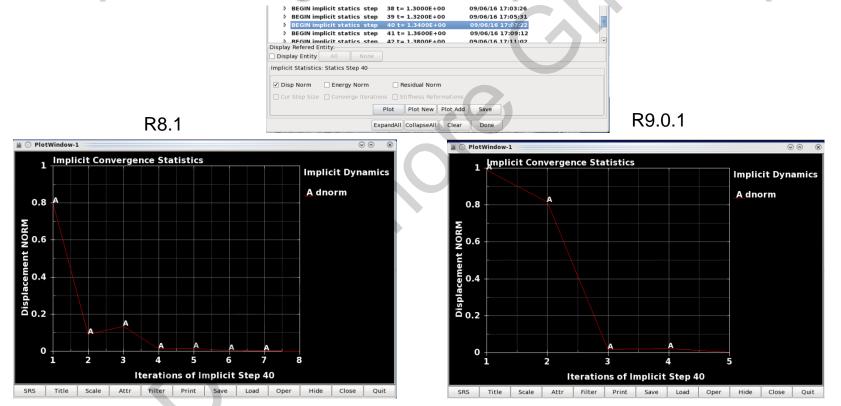
R8.1 94 steps in 3h 7min R9.0.1 with IACC=1 94 steps in 2h 49min

LSPP d3hsp view

© Dynamore GmbH 2016

Providing convergence related information

- Organized presentation of d3hsp's content
- For implicit runs: Display of each step's norms
- MISC d3hsp view


© LS-N Post(R) V4.3 - 27Jun2016(09:00)-64bit File Misc. Vew Geometry FEM Application Settings Help		00
	🙀 💿 D3hsp View 🐵 🐵	RefGeo
	File Name: /home/algrome/Downloads/vgl_r81_r90/Y/ Browse Load	2
	Search:	Curve
	Informations:	\overline{Q}
	mass properties of part # 2000962	Surf
	 mass properties of part # 2000968 mass properties of part # 2000969 	S
	 mass properties of part # 2000970 	Solid
	mass properties of part # 2000971	part 😥
	 mass properties of body summary of mass 	GeoTol
	total mass = 0.33432795E+00	4
	 100 smallest timesteps calculation with mass scaling for minimum dt 	Mesh
	Implicit Statistics: Statics	1
	b Timing information	Model
	Number or cycle: 1444	EleTol
		6
	Display Refered Entity:	Post
	Display Entity All None	
	Implicit Statistics: Statics	MS MS
	Disp Norm Energy Norm Residual Norm	Safety
	Cur Step Size Converge Iterations Stiffness Reformations	
	Plot Plot New Plot Add Save	Favor1
	ExpandAll CollapseAll Clear Done	
Option HidEle ShaEle VieEle WirEle Feat Edge Grid Mesh	Shrink SectMo Fringe Unref EdgGeo ShaGeo WirGeo ShfCtr Clear AutCen Zoln :	ZoOut
>	Input file name first	20000
Check to enable display corresponding entities(Warning and Error) on the mode		Normal R

LSPP d3hsp view

© Dynamore GmbH 2016

Example: Viewing the development of a disp norm

Outline

© Dynamore GmbH 2016

> Intro

- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

Interesting sites to go

© Dynamore GmbH 2016

When you need information, help, inspiration, ...

- https://www.dynamore.se/en/resources/tips-and-tricks
 - Implicit starter kit including guideline
- Appendix P: LS-DYNA DRAFT Manual
 - A lot of information about LS-DYNA implicit
- www.dynasupport.com
 - Further guidelines, checklists
- www.dynaexamples.com/implicit
 - Application examples (free download)
 - Includes the Yaris models
- support@dynamore.de

Summary

© Dynamore GmbH 2016

- LS-DYNA R9 solver is a successive enhancement. For running nonlinear implicit problems the R9 solver should be definitely the user first choice. Within the last years the LS-DYNA solver has grown to a powerful tool and it has reached a competitive grade.
- The successful conversion of the CCSA Yaris model demonstrates the capability of the implicit solver. The total effort of bringing the model to a "implicit ready" grade was manageable.
- On current hardware architectures implicit jobs turn around time can be reduced about 10% by using the avx2 executables of LS-DYNA. Considering robust models there is no effect on the results.
- With LSPPs d3hsp and the DYNATool check-convergence powerful tools can help user to learn more about the convergence behavior. A comparison between different versions of a model can be easily made.

© Dynamore GmbH 2016

THANK YOU for listening

BioRID's 9 Hz mode