

An Overview of
User Defined Interfaces in LS-DYNA

Tobias Erhart

Dynamore GmbH, Stuttgart, Germany
tobias.erhart@dynamore.de

Abstract:

The user-defined features in LS-DYNA are powerful tools that allow users in academia or industry to
verify research results in the context of general and complicated finite element applications.
Implementation work concerns only the special field of interest, and there is no need for the
comprehensive task of developing and maintaining the complete finite element software. The most
popular user interface is for material modeling. But there also exist user interfaces for structural
elements, airbag sensors, solution control, friction, interface control, weld failure, loads, output control,
adaptivity, thermal contact, and others.

An overview of current user-defined interfaces in LS-DYNA version 971 R5.0 will be presented. The
aim of this contribution is to bring together the possibilities to add own numerical models and
algorithms to the code. Therefore, each interface is described in its functionality. It will be explained,
how to activate the particular interface in the input, where to find the corresponding subroutine, and
which input/output arguments can be used.

Keywords:

User-defined interfaces

1 Introduction

A sophisticated multi-physics finite element code consists of a huge amount of different algorithms for
the numerical simulation of large-scale real-world problems. In order to provide enough freedom to
choose solution methods for the problem at hand, LS-DYNA already offers many options for all
imaginable tasks such as element types, materials, contacts, connections, loads, boundary conditions,
etc.. But sometimes, the user still wishes to implement her or his own algorithm at a particular point of
the solution procedure. Therefore, LS-DYNA also provides user-defined interfaces, i.e. the source
code is partly open for customized modifications. Several user interfaces for the implementation of
own numerical models or algorithms exist. Before the available user interfaces will be described, a
short introduction into the general handling of the special “usermat” version will be given.

First of all, a so-called “usermat package” is needed, which is available via local LS-DYNA distributors.
In general, this package is a compressed archive which contains several files such as library files
(*.a), object files (*.o), include files (*.inc), Fortran files (*.f) and a Makefile . Most important
files for the user are the Fortran files dyn21.f and dyn21b.f as well as the Makefile . The last one
specifies how to derive the target program, in this case the LS-DYNA executable. It also gives
information about the specific Fortran compiler that should be used. If this compiler is installed, then
the make command will start the generation of her or his own executable, called “ls971” (SMP) or
“mpp971” (MPP). This program can then be operated in the same way as a standard version of LS-
DYNA. If the translation and linking procedure was successful, the next step is to implement own
algorithms for materials, elements, friction, or other features into the user subroutines of Fortran files
dyn21.f and/or dyn21b.f . An overview of available user interfaces and associated keywords is
given in table form below (Table 1). The listed subroutines represent the highest level of entrance of
the particular interface. In the following, the individual user interfaces will be presented in more detail.

2 User-defined materials

The most applied and probably most sophisticated user interface of LS-DYNA serves the implemen-
tation of self-made material models, especially standard constitutive models (computation of stresses
from strains) for shell and solid elements. However, other material laws such as Equations of State,
cohesive zone models, thermal material properties or failure criteria for standard materials can be
incorporated. The different possibilities will be presented in the following.

2.1 Structural materials

A key ingredient of every finite element analysis is the material model, where the strains or
deformations are connected to the stresses or forces by a constitutive relation. In LS-DYNA, various
material models exist ranging from isotropic elastic to anisotropic elasto-viscoplastic with damage and
many other specialized constitutive laws. They are able to describe the behavior of materials such as
metals, plastics, rubber, foam, concrete, soil, composites, wood, and many others. But since this is a
broad subject and also still an active area of research, individual users try to find the best solution for
their material at hand. Therefore, the possibility to implement own material models is crucial.

With the help of the keyword *MAT_USER_DEFINED_MATERIAL_MODELS one can define the input for
the user material interface. If this keyword is used, the main program calls subroutine usrmat in
dyn21.f , and from there, different subroutines are called depending on the element type in use:
urmathn for solid elements, urmats for shell elements, urmatb for beam elements, urmatd for
discrete elements and urmatt for truss beam elements. Those subroutines in turn contain the calls to
the actual user subroutines umatXX , where it is the objective to compute stresses from strains (see
Figure 1).

The input arguments of those subroutines are material constants from the input, strain increments, old
stresses, old history variables, current time and step size, and others. The output variables are the
new (Cauchy) stresses and the updated history values. If a user-defined constitutive subroutine is to
be used in implicit analysis, the user has also to define the material tangent modulus. In this case LS-
DYNA calls the subroutines urtans or urtanh from within different material tangent operator
subroutines utan XX are called. Within this subroutine the element stiffness matrix has to be filled with
consistent data to achieve a quadratic rate of convergence in the global equilibrium iteration.

User interface Keyword input Subroutine(s) File

Structural Materials *MAT_USER_DEFINED_... usrmat, utans dyn21.f

Equations of State *EOS_USER_DEFINED ueoslib dyn21b.f

Cohesive Materials *MAT_USER_DEFINED_... umatXXc dyn21b.f

Thermal Materials *MAT_THERMAL_USER_... thusrmat dyn21b.f

Material Failure e.g. *MAT_024 with FAIL<0 matusr_24/103 dyn21.f

Structural Elements
*SECTION_SHELL/SOLID with
ELFORM=101...105

usrshl, usrsld dyn21b.f

Interface Friction *USER_INTERFACE_FRICTION usrfrc dyn21.f

Solution Control - uctrl1 dyn21.f

Interface Control *USER_INTERFACE_CONTROL uctrl2 dyn21.f

Airbag Sensors *AIRBAG: parameter RBID airusr dyn21.f

Thermal Contact *USER_INTERFACE_CONDUC... usrhcon dyn21.f

Boundary Flux *BOUNDARY_FLUX: NHISV>0 usrflux dyn21.f

Adaptivity
*CONTROL_ADAPTIVE
with ADPOPT=9

useradap dyn21.f

Loads *USER_LOADING loadud dyn21.f

Weld Failure *MAT_100 with OPT=2, 12, 22 uweldfail… dyn21.f

Joint Forces *CONSTRAINED_JOINT_USER… ujntfdrv dyn21.f

Table 1: User-Defined Features and corresponding keyword input, subroutines and files

Since the whole user material interface is described in Appendix A of the User’s Manual [1] in great
detail, the most important features are only listed at this point:

- Curve/table arrays for accessing defined load curves/tables in the keyword input file are available.

- Local coordinate system can be used to model anisotropic materials.

- Temperatures are made available if needed.

- Failure (element deletion) can be included.

- Individual strain measures can be used with the help of the deformation gradient.

- The user can choose between scalar or vectorized implementation.

- History variables can be post-processed.

- Element IDs, Node IDs, Integration point numbers, coordinates, and many others are available.

- Unlimited number of history variables can be used starting with the R5 release of Version 971.

Examples for isotropic hypoelastic and hyperelastic (Neo-Hooke) materials can be found in dyn21.f .

LS-DYNA element routines
→ call usrmat(...)

subroutine usrmat(...)

→ call urmathn(...)

→ call urmats(...)

→ call urmatb(...)

...

subroutine urmatxx(...)

...
→ call umat41(...)

→ call umat42(...)

→ call umat43(...)

...

subroutine umatxx(...)

libdyna.a
dyn21.f

dyn21.f
dyn21.f

user
material
model

solids

shells

beams

LS-DYNA element routines
→ call usrmat(...)

subroutine usrmat(...)

→ call urmathn(...)

→ call urmats(...)

→ call urmatb(...)

...

subroutine urmatxx(...)

...
→ call umat41(...)

→ call umat42(...)

→ call umat43(...)

...

subroutine umatxx(...)

libdyna.a
dyn21.f

dyn21.f
dyn21.f

user
material
model

solids

shells

beams

Figure 1: User material interface scheme

2.2 Equations of state

In some situations, an Equation of State (EOS) is required in order to accurately simulate material
behavior. An EOS determines the hydrostatic, or bulk, behavior of the material by calculating pressure
as a function of density and perhaps, energy and/or temperature. Situations that call for an EOS are
characterized by very high strain rates, material pressures far in excess of yield stress, and
propagation of shock waves.

To define an own Equation of State in LS-DYNA, keyword *EOS_USER_DEFINED has to be used.
With that, subroutine ueoslib in dyn21b.f is called and from there, the actual user subroutines
ueos XXs (scalar) or ueos XXv (vectorized) are called. The chosen subroutine is called twice for each
integration point in each element. The first call requires the calculation of the bulk modulus, and the
second updates the pressure and internal energy. Parameters that are passed to those routines are
pressure, reference density, history variables, initial and relative volume, internal energy, and a
pressure cut-off value. An example is given in the Fortran file dyn21b.f . More informations about that
user-defined interface can be found in Appendix B of the User’s Manual [1].

2.3 Cohesive materials

Cohesive connections are characterized in that two solid bodies hold together by atomic or molecular
forces, which usually takes place within a thin layer. Typical applications are adhesives, weld
connections, laminates or composites, interfaces between matrix and inclusions, etc. The mechanical
behavior of such cohesive interfaces inside a structure can have a big influence on the overall load
bearing behavior, especially when it comes to material separation, i.e. failure, delamination or
debonding of those cohesive connections.

For those applications, LS-DYNA provides so-called cohesive elements, which can be placed between
solid elements or shell elements. Such a cohesive element formulation includes a material law for the
relation between separations and traction stresses. At the moment, about 5 different material laws
exist in LS-DYNA to model e.g. elastic-viscoplastic behavior with damage, but the user is also free to
implement her or his own model.

Therefore, keyword *MAT_USER_DEFINED_MATERIAL_MODELS should be used in combination with
cohesive elements (ELFORM=19 or 20 on *SECTION_SOLID). This invokes the call of subroutines
umatXXc in dyn21b.f . The objective for the user is then to calculate the traction stresses on the mid-
surface of the element as a function of the displacements and velocities of the upper and lower
surfaces. The arguments that are passed to the subroutines are material constants, displacements,
velocities, history variables, time step size, curves, failure flag and the traction stresses. A further
description of this user interface is given in Appendix R of the User’s Manual [1].

2.4 Thermal materials

With LS-DYNA, structural and thermal analysis can be combined through coupled constitutive models.
The user may select thermal elastic and viscoelastic materials for such an analysis. Therefore, the
*MAT_THERMAL_... cards allow the input of thermal properties such as specific heat capacity,
thermal conductivity, and others.

If the standard thermal materials in LS-DYNA are not sufficient to describe the specific material at
hand, the *MAT_THERMAL_USER_DEFINED keyword could be used to implement her/his own model.
This keyword invokes the call of user subroutine thusrmat in dyn21b.f . From there, user
subroutines thumat XX are called. Arguments of these subroutines are material parameters, current
temperature, history variables, curve arrray, element number, element type, and others. It is possible
to share history variables with mechanical user materials, i.e. quite advanced coupled phase transition
models can be implemented. Detailed informations are given in comments in dyn21b.f and in
Appendix H of the User’s manual [1].

2.5 Material failure for standard materials

For the commonly used LS-DYNA (metal) materials 24, 103, 114, 123, 124, 155, and 195 the user has
the possibility to use his own failure criteria. This option is activated by setting FAIL <0 on the
corresponding *MAT_... card. This invokes the call of subroutines matusr_24 or matusr_103 in
dyn21.f . Arguments of these subroutines are stress and strain rate components, time step size,
plastic strain, material constants and curves. With these informations, the user can construct her or his
own failure criteria. If this criteria is met, a flag can be set to trigger failure of an integration point and
element deletion.

3 User-defined elements

Element technology is still an active area of research, where the following topics are important:
robustness, speed, (coarse mesh) accuracy, prevention of locking, prevention of hourglassing, etc.
Exemplary deformations of an elasto-plastic block for different element formulations are shown in
Figure 2. The idea with the interface in LS-DYNA is to raise the level of abstraction to a point where
the user has to provide a minimum of input and still be able to define useful elements. Therefore the
interface is split into one for continuum elements with numerical integration and one for resultant
elements. In this way, the integrated elements take advantage of the extensive LS-DYNA material
library and the user does not have to write a separate material routine for the element in question -
unless he wants to.

fully integrated reduced integrated without
hourglass stabilization

reduced integrated with
hourglass stabilization

fully integrated reduced integrated without
hourglass stabilization

reduced integrated with
hourglass stabilization

Figure 2: Deformations for different element formulations

User-defined elements in LS-DYNA can be implemented for hexahedral solids and quadrilateral
shells. Up to a total of ten elements can be implemented in a single executable for both explicit and
implicit analyses. The feature is invoked on the *SECTION_SOLID or *SECTION_SHELL card, where
the element formulation ELFORM should be specified to a number between 101 and 105. The
corresponding user subroutine usrshl (shells) or usrsld (solids) is called for computing the internal
force and tangent stiffness. As already mentioned, a distinction is made between integrated elements
and resultant elements.

For the integrated elements the user only needs to implement the gradient displacement matrix and
Jacobian, leaving LS-DYNA to take care of stress updates and force and stiffness assembly. This
allows the user to take advantage of the rich supply of standard materials in LS-DYNA and also
relieves him/her from the tedious task of assembling the global finite element materices.

On the other hand, the global force vector and stiffness matrix must be implemented in a single routine
for the resultant elements. While this puts little or no limits in terms what type of elements can be
defined, extra amount of work may be needed to define the element in question.

The arguments that are passed to the user subroutines are property parameters, history variables,
nodal coordinates, isoparametric coordinates, shape functions and derivatives, etc. Another interesting
feature is the optional specification of extra degrees of freedom per node. These extra degrees of
freedom could for instance represent shell thickness, hydrostatic pressure, or additional degrees of
freedom from a multi-scale formulation.

A very good desription of the user-defined element interface is given by Borrvall [2].

4 User-defined friction

The friction between two contact partners is based on a Coulomb formulation in LS-DYNA. Its
behavior can be controlled with the parameters on the *CONTACT_... card 2: static and dynamic
friction coefficients, exponential decay coefficient, and coefficient for viscous friction. The underlying
frictional algorithm updates the interface force to a trial value first, then computes the tangential part,
computes the coefficient of friction and the yield force, and finally determines the frictional force. This
is equivalent to an elastic-plastic spring model.

Now, this standard algorithm can be modified by the user via the keyword *USER_INTERFACE
_FRICTION which invokes the call of subroutine usrfrc in dyn21.f . In fact, two separate
subroutines usrfrc exist in the Fortran file for MPP and SMP for reasons that have to do with how
the contacts are implemented in general.

In the SMP version of LS-DYNA, the user is required not only to define the frictional coefficients but
also to assemble and store contact forces and history. However, this gives the opportunity to make
quite general changes to the frictional algorithm. The standard algorithm is already given in subroutine
usrfrc as a starting point. In MPP-DYNA, only the frictional coefficients have to be defined.

However, the main idea of this interface is the user-defined modification of friction coefficients, e.g.
static and dynamic friction coefficients as functions of temperature, contact pressure, sliding velocity,
and other input values such as penalty stiffness, sliding displacement, own history variables, averaged
plastic strain from adjacent elements etc. Also, the curve array for accessing defined load curves in
the keyword input file is available. An example for pressure and velocity dependent rubber friction is
given in Figure 3.

F

v

F

v

Figure 3: Rubber friction coefficient as function of pressure and velocity [3]

At the moment, the user friction interface is not supported by all available contacts in LS-DYNA, but
should cover the most interesting ones. Further informations about this user interface can be extracted
from the comments in dyn21.f and can be found in Appendix G of the User’s Manual [1].

Remark: If only the dependence of the friction coefficient from relative velocity and pressure is
needed, the option FS=2 of the *CONTACT_... keyword should be used, where a corresponding
table can be defined in the input.

5 Other user-defined features

Besides the three main topics - materials, elements and contact friction - other user-defined interfaces
exist, which will be presented in this chapter.

5.1 Solution control

This option may be provided by the user to control the I/O, monitor the energies and other solution
norms of interest, and to shut down the problem whenever he pleases. The corresponding subroutine
uctrl1 in dyn21.f is called once each time step and does not need any control card to operate.
Arguments of this subroutine are nodal displacements, velocities, accelerations, nodal masses,
energies, time step size, cycle number, ASCII file units, and others.

5.2 Interface control

This feature may be provided by the user to turn contact interfaces on and off. It is activated by the
keyword *USER_INTERFACE_CONTROL, which invokes the call of subroutine uctrl2 in dyn21.f .
Input arguments of this subroutine are interface number, interface type, current solution time, cycle
number, slave nodes, master nodes, thickness, velocity, time step size, etc. Based on these
quantities, a criterion can be defined to decide if the current contact is active or inactive. An example
for the user-defined interface is given in dyn21.f . A description of that feature is given in Appendix F
of the User’s Manual [1].

5.3 Airbag sensor

To trigger the deployment of an airbag in LS-DYNA, the keyword *SENSOR_... can be used.
Different sensor types and locations, switch criterions and math computations on sensor results can
be defined to govern the airbag ignition (see Figure 4).

As an alternative, a user sensor interface can be used. The sensor is mounted on a rigid body which is
attached to the structure. The motion of the sensor is provided in the local coordinate system defined
for the rigid body in the definition of *MAT_RIGID . When the user-defined criterion is met for the
deployment of the airbag, a flag is set and the deployment begins. All load curves relating to the mass
flow rate versus time are then shifted by the initiation time. This option is activated by parameter RBID
on the *AIRBAG keyword and the corresponding subroutine is airusr in dyn21.f . Parameters that
are passed to the subroutine are rigid body displacements, velocities, accelerations, input parameters,
history variables, time, step size, airbag ID, etc. An example for airbag activation based on a resultant
acceleration is given in dyn21.f .

Figure 4: Airbag deployment (Courtesy of Saab Automobile AB)

5.4 Thermal contact

When two solid bodies come into contact, heat flows from the hotter body to the colder body (see
Figure 5). The coefficient describing that heat conduction is called the thermal contact conductance. In
LS-DYNA, it is possible to define thermal contact conductance as a function of temperature and
pressure using the keyword *CONTACT_..._THERMAL_FRICTION_... . Different formulas for that
behavior can be chosen by setting parameter FORMULA.

If an own relationship between heat conductance and pressure, temperature, velocity, etc. ought to be
implemented, the keyword *USER_INTERFACE_CONDUCTIVITY should be used. The corresponding
subroutine in dyn21.f is named usrhcon . Input arguments of this subroutine are user parameters,
interface pressure, temperature, displacements, velocities, distance between contact interfaces, and
the curve array for accessing defined load curves in the keyword input file. The output of this routine is
the thermal contact conductance. More informations about the general topic of hot stamping with LS-
DYNA can be found in [4].

Figure 5: Thermal Contact

5.5 Boundary flux

Surface heat flux is a fundamental thermal boundary condition along with convection and temperature.
In a thermal or coupled thermal/structural analysis with LS-DYNA, it is possible to define
corresponding flux boundary conditions via *BOUNDARY_FLUX_OPTION.

If the number of history variables is chosen greater than zero (NHISV>0), then the user-defined
subroutine usrflux in dyn21.f is called. With that interface, it is possible to define the boundary flux
in or out of a surface segment as an arbitrary function of temperature and history. Parameters that are
passed to the subroutine include the heat (energy) per time and per surface area, the segment nodal
temperatures at previous and current time, the segment nodal coordinates and the time integration
parameter. Also, the current thermal simulation time, the time step, and average segment temperature
is provided together with the curve array. An example for user-defined boundary flux is given in
dyn21.f . More details about this user-defined interface can be found in Appendix S of the User’s
Manual [1].

Remark: The *DEFINE_FUNCTION keyword can be used instead of thermal user subroutines [5]. This
keyword allows in-line functions to be defined in the input file. Such as for thermal contact one can
write h = function (time, temperature_slave_seg, temperature_master_seg, temperature_average,
pressure, gap). For flux this is flux = function (x, y, z, Vx, Vy, Vz, time, temperature).

5.6 Mesh refinement for 3D-shell adaptivity

In a finite element analysis, it is sometimes helpful or even necessary to refine the mesh locally or to
remesh a whole part. The reason could be a better resolution of high gradients, the minimization of
discretization errors or a better approximation of geometrical details as it is the case for sheet metal
curvatures in forming simulations (see Figure 6). For those applications the keyword *CONTROL_
ADAPTIVE is used to govern the refinement procedure. The adaptive options of that feature include
angle change criterions, shell thinning, or a stress-based error norm.

If the user wants to trigger adaptive refinement for shells with her or his own criteria (e.g. an error
indicator), this can be done by setting ADPOPT=9. The associated subroutine for this option is
useradap in dyn21.f . Arguments of this subroutine are shell element connectivities, stresses and
plastic strain at each integration point. The user’s own refinement indicator is then used to decide
which elements should be refined.

Figure 6: Examples for adaptive refinement - metal forming, localization.

5.7 Loads

This feature may be provided to apply pressure and force boundary conditions in a user-defined way.
The keyword *USER_LOADING activates this option. The corresponding subroutine is loadud in
dyn21.f . There, the user has access to several variables like nodal displacements, velocities and
accelerations, element connectivities as well as to his own parameters. Pressure can then be defined
as a function of these variables. More informations about that topic can be found in a paper from the
4th European LS-DYNA Users Conference [6].

5.8 Weld failure and damage

The standard modeling technique for spotwelds is a combination of tied contacts and deformable
structural elements such as beams or one or more solid elements (see Figure 7). For the elasto-plastic
material behavior of those spotwelds *MAT_SPOTWELD is often used, where different failure and
damage options exist.

real spotweld

spotweld as solid elements

spotweld as beam

Figure 7: Spotweld modeling techniques

With OPT=2, 12 , or 22 user-written subroutines uweldfail , uweldfail12 , or uweldfail22 in
dyn21.f are invoked. The appropriate routine is called every time step and a failure flag can be set
based on a criterion arranged by oneself. The main differences between those three user options is
that uweldfail handles sudden failure with up to 6 user parameters, uweldfail22 deals sudden
failure with up to 22 user parameters, and uweldfail12 provides the opportunity to define a damage
model with failure and up to 22 user parameters. These different options will be described in the next
two sections. Currently, user-defined weld failure is available for beam welds and hex assembly welds.
More informations about that topic can be found in Appendix Q of the User’s Manual [1] or comments
in dyn21.f .

5.8.1 Failure only: OPT=2,22

Arguments of subroutine uweldfail (OPT=2) are axial and shear forces, bending moments, torsional
resultant, weld diameter, 6 user parameters, and the current simulation time. With these input values,
the user can define her/his own failure criterion and he can set the failure flag to 1 (“failed”) if the
criterion is fulfilled. In this case, the corresponding element gets deleted immediately afterwards. A
demonstration failure model is given in dyn21.f . Option OPT=22 (subroutine uweldfail22) is
identical with the just described one with the minor difference that 22 user parameters can be defined
and used instead of only 6. Therefore, two more lines are read on the *MAT_SPOTWELD keyword.

5.8.2 Damage and failure: OPT=12

The newest option provides the opportunity to incorporate not only a failure criterion but also a
damage model to describe the post-peak or softening behavior of the spotweld. In this subroutine
uweldfail12 , the user has access to several input variables such as forces, moments, diameter of
weld, effective plastic strain, effective strain rate, number of intergration points in the weld, current
simulation time and cycle number. Input and output values are current damage, weld history variables,
and others. The damage takes values between 0 (undamaged) and 1 (totally damaged) and is used to
derive the true stresses from the nominal stresses.

5.9 Joint forces

Joint connections between rigid bodies are controlled by the keyword *CONSTRAINED_JOINT_... .
There, the geometric location of the joint is defined. Afterwards, the resulting forces acting on the rigid
bodies are obtained by the penalty method depending on the joint motion. The associated penalty
stiffness can be defined with that keyword, too. For the definition of optional rotational and
translational joint stiffnesses the keyword *CONSTRAINED_JOINT_STIFFNESS_... can be used.

As an alternative, keyword *CONSTRAINED_JOINT_USER_FORCE can be used which invokes the call
of subroutine ujntfdrv in dyn21.f . With that interface, force resultants can be generated as a
function of time and joint motion. At the moment, only the revolute joint type is fully supported. An
example for a spring and damper system for a revolute joint can be found in dyn21.f .

6 Conclusions

An overview of all user-defined interfaces, that are currently available in LS-DYNA, was given. After a
general description of the handling of usermat packages, the individual interfaces were presented in a
way, that the user might get an idea, if one of them is useful for her or his needs. Each of them is
explained in more detail in the Appendices of the manual, in other papers or in code comments. The
main idea of this contribution was to merge the scattered informations about user-defined interfaces in
one study. It is unquestionable that this overview is only a snapshot, since the possibilities for further
customized interfaces will grow in the future, where new ideas from users are very welcome.

7 References

[1] Hallquist, J.O.: “LS-DYNA Keyword User’s Manual”.
[2] Borrvall, T.: “A User-Defined Element Interface in LS-DYNA v971”, Proc. 9th International LS-

DYNA Users Conference, Dearborn, MI, USA, 2006, 18-11ff.
[3] Lindner, M., Kröger, M., Popp, K., Blume, H.: “Experimental and Analytical Investigation of

Rubber Friction”, Proc. of the ICTAM 2004, Warsaw, August 15-21, 2004.
[4] Shapiro, A.B., “Using LS-DYNA for Hot Stamping”, Proc. 7th European LS-DYNA Users

Conference, Salzburg, Austria, 2009.
[5] Shapiro, A.B., “Using LS-DYNA for Hot Forming”, Proc. 6th German LS-DYNA Forum,

Frankenthal, Germany, 2007, C-II-11ff.
[6] Adoum, M., Lapoujade, V.: “Examples’ manual for *USER_LOADING option”, Proc. 4th

European LS-DYNA Users Conference, Ulm, Germany, 2003, G-I-29 ff.

