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Abstract 
 
The computation of fluid forces acting on a rigid or deformable structure constitutes a major problem in fluid-
structure interaction. However, the majority of numerical tests consists in using two different codes to separately 
solve pressure of the fluid and structural displacements. In this paper, a monolithic with an ALE formulation 
approach is used to implicitly calculate the pressure of an incompressible fluid applied to the structure. The 
projection method proposed by Gresho is used to decouple the velocity and pressure 

 
Introduction 

 
A computational procedure is developed to solve problems of viscous incompressible flows 
interacting with rigid or deformable structure. The arbitrary Lagrangian Eulerian method (ALE)  
is used to move the internal fluid nodes whereas the boundary fluid nodes move with the 
structure. The coupling of the mesh motion equations and the fluid equations is essentially done 
through contact surface boundary conditions. In continuum Mechanics, two descriptions are 
considered for the motion in a continuum media 

 

ALE Description 
 
The ALE description for incompressible viscous flows has been developed by Hughes at al [1], 
to solve free surface flows and fluid-structure interaction problems. The general kinematics 
theory developed in [1] serves as the basis of the Lagrangian-Eulerian description. For this 
purpose, the authors define three domains in space, and mappings from one domain to the other. 
The first one, called the spatial domain, is considered as the domain on which the fluid problem 
is posed. The spatial domain is generally in motion, because of moving boundaries. The second 
domain, called the material domain, is to be thought of as the domain occupied at time t=0 by the 
material particles which occupy the spatial domain at time t. The third domain, called the 
reference domain, is defined as a fixed domain throughout. From these domain descriptions, we 
can see that the Eulerian description is obtained when the spatial domain coincides with the 
reference domain, whereas the Lagrangian reference is obtained when the material domain 
coincides with the reference domain. 
Both the material and spatial domains are generally in motion with respect to the reference 
domain; it is convenient to express the material time derivative of a physical property φ  in the 
reference configuration. 
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where 
.

φ  is the material time derivative, and t,φ  is the time derivative when freezing coordinates 

in the reference domain, c is the convective velocity. 
meshvvc −=  (2) 

v  is the fluid velocity, and meshv  is the mesh velocity. In the Eulerian description, the mesh 
velocity is zero, 0=meshv , whereas in the Lagrangian description vv mesh = , and .0=c  
In the ALE formulation, the mesh nodes move with an arbitrary velocity. The choice of the mesh 
velocity constitutes one of the major problems with the ALE description. Different techniques 
have been developed for updating the mesh in a fluid motion, depending on the fluid domain. For 
problems defined in simple domains, the mesh velocity can be deduced through a uniform or non 
uniform distribution of the nodes along straight lines ending at the moving boundaries. 
 

Governing equations 
 
The Lagrangian formulations are frequently used to solve the structural behaviour. Indeed, 
displacements of the nodes and the elements on a Lagrangian mesh correspond to the movements 
of material. The material edges always coincide with the edges of the elements. Thus, if the 
material sharply becomes deformed, the mesh is subjected to distortions. In general, the 
structural deformations are weak so that the Lagrangian mesh remains regular and is not 
subjected to distortions. The boundary conditions are easily imposed because the edges of the 
mesh represent the limits of the physical domain during calculation. For these reasons, the 
Lagrangian formulations are much appreciated. In the Cartesian coordinate system, the 
displacement of the structure u in a domain SΩ  (see Fig.1) is governed by: 
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with initial and boundary conditions: 
 

[ ]Tuu DSii ,0on ×Ω=
∧

δ  (4) 

 
Two points of view are generally considered to describe the movement of a fluid. The first is 
Lagrangian where the speed of the mesh follows that of the fluid. The disadvantage of this 
description is to generate great distortions of mesh. The second is Eulerian and consists in 
studying the movement of the fluid in fixed positions. The domain of study is fixed and the fluid 
is updated constantly in this one. This method introduces a term of convection into the equations 
to be solved. It avoids the great distortions of mesh. However, the difficulty is deferred to the 
interface where it is difficult to represent the boundary conditions for a problem of interaction 
fluid-structure. 
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Figure 1. Fluid and structure domains 
 

So, we made recourse to a mixed formulation. This later is the ALE method which combines at 
the same time Eulerian and Lagrangian descriptions to describe the movement of the fluid 
particles. In this framework, the velocity of the incompressible viscous fluid in a domain is 
characterized by the mass and momentum conservation laws such that: 
 

[ ]Tv Fii ,0in0, ×Ω=  (5) 
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where iv  and fρ indicate, respectively, the flow velocity components and the fluid density. The 

term m
jv  represents the velocity of the mesh. If 0=m

jv , we obtain the Eulerian formulation 

because the convective velocity of the mesh is null. If j
m
j vv = , we obtain the Lagrangian 

formulation for which the convective velocity is the fluid velocity. The quantity m
jj vv −  is the 

relative velocity and the stress tensorijτ  is commonly defined by: 

 
( ) ijijjiFij pvv δµτ −+= ,,  (7) 

 

where Fµ  is the fluid dynamic viscosity. 
The momentum equation is to be solved with the initial condition and the boundary conditions: 

( ) Fiv Ω= in00  (8) 

[ ]Tvv DFii ,0on ×Ω=
∧

δ  (9) 

where iv
∧

 are the imposed velocity components on DFΩδ . 

The boundary conditions on the fluid-structure interface IΩδ are given by : 
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t

u
v I

i
i ,0on ×Ω

∂
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= δ  (10) 

And 0=p , on the outflow boundary 
 
 

Fluid Analysis Algorithm 
 
It is well known that the main difficulties arising in the numerical solution of the convection-
diffusion equations are due to their no-self-adjoint character. The standard Galerkin method 
leads to no physical spatial oscillations when applied to the high convective case. To preclude 
such anomalies, the most popular method being the use of upwind differencing on the convective 
term via Petrov-Galerkin methods (see, for example, Heinrich & al [2]; Heinrich and 
Zienkiewicz [3], Belytscho & al. [4]). Although theses methods are precise and stable, we will 
use a ‘split’ method which is a simple mean to obtain a robust and effective formulation. This 
time-split method decomposes the time step into two phases : 
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– Phase 1 is a solution of the Lagrangian equations of motion (advection terms are nil) updating 
the velocity field by the effects of all forces. For the fluid, the velocity-pressure formulation of 
the discretized problem is decoupled by the projection method (for more details, see Cho and Lee 
[5]). 
 
– Phase 2 adds advection contributions, and is required for runs that are Eulerian or contain some 
relative motion of mesh and fluid. 
 
In order to effectively solve the pressure and velocities satisfying the continuity constraint Eq.(5) 
for the phase 1, we adopt the fractional method proposed by Gresho [6]. The idea of these 
methods is to decouple the velocity v and the pressure p. These are based on a resolution in three 
steps of the Navier-Stokes equations. 
Hereafter, we describe briefly the above method in Lagrangian formulation: 
 

– Intermediate velocity. The first step consists in calculating an intermediate velocity ∗iv , 

solution of the Naviers-Stokes equation without taking into account the continuity constraint. 
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– Projection. As the velocity ∗iv  does not yet satisfy the incompressibility condition Eq.(5), it is 

projected on a divergence free space to get an adequate approximation of the velocity. This is 
obtained from : 

i
F

ii p
t
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* ∆∆+=

ρ
 (13) 

with 01
, =+n
iiv . The term p∆  is a pressure increment. 

The second step consists in deriving a Poisson equation for the pressure p. In fact, by taking the 
divergence of Eq.(13) and using the incompressibility condition Eq.(5), we obtain : 
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Once the corrective pressure 1+∆ np  has been determined, the final velocity field is obtained from 

the intermediate velocity ∗iv  and 1+∆ np : 
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– Pressure update. Since v is the physical velocity, the pressure p can be given from 1+∆ np . 

11 ++ ∆+= nnn ppp  (16) 
 
For the phase 2, we used a first order Godunov method : the Donor Cell (see Benson [7] and 
Amsden & al. [8]). This step is bypassed for a purely Lagrangian calculation. In all other cases 
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(Eulerian and ALE calculation) the relative velocity m
jjALE vvv −=  is not null, and we must 

calculate the flux of momentum between cells. For each cell (see Fig.2), we calculate the volume 
swept out by each of faces relative to their Lagrangian positions Lx . According to the sign of 
these volumes, we add or remove momentum to the cell. 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Advected volume  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3. Flowchart for the time-incremental fluid-structure numerical analysis 
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Numerical implementation 
 
The numerical algorithm is sketched on Fig.3 . 
In the course of the Lagrangian phase, we compute structural displacements and intermediate 
velocities necessary to the projection method. To obtain displacements and velocities, we 
compute nodal forces from respectively Eq.(11) and Eq.(12). This allows us to use the same 
method to solve the structural behaviour and the liquid dynamic response. The difference 
between the structural algorithm and the fluid algorithm is the computation of stress tensors. 
Then, we solve the pressure from Eq.(14) and Eq.(16). So, we obtain the velocity which is 
solenoidal (div(v) = 0). For the Lagrangian nodes, we move the domain to update the coordinates 
of the nodes. And for the other nodes, we compute the momentum flux of the cell in order to 
update the velocity. 

 
 

Numerical results 
 
To illustrate this numerical method, we study the case of a confined flow between two cylinders 
which are considered as infinite (see Fig.4). The diameter of the outer cylinder is cmD 5.5=  and 
that of the inner cylinder is cmd 2.2= . The thickness of the walls is mme 1= e = 10-3 m. The 
structural density, the Young modulus, the Poisson number, the fluid density and kinematic 
viscosity are respectively: 3.2700 −= mkgSρ , MPaE 69000= , 3.0=η , 3.1000 −= mkgFρ  and 

12017545.0 −= smν . Only the inner cylinder is excited, the other is fixed. Its velocity has the 
form : 

)sin()(),,,( tfAtvtzyxv x π==  (17) 

with an amplitude mmA 1=  and a frequency Hzf 7.38= . 
 

 
 

Figure 4.  Problem description 
 

We compare our results obtained by the method described in this paragraph 5 with those 
obtained by ASTER-SATURN and provided by Electricité De France (EDF). In this paper, we 
examine the evolution of the pressure at the points A and B which are diametrically opposite (see 
Fig.4 and Fig.5). To not deform the fluid mesh and create great distortions with the structural 
displacement, we use an ALE mesh for the elements near the inner mobile cylinder and an 
Eulerian mesh for the others elements (see Fig.5). This enables us to obtain a good 
approximation of the pressure of the element since in this case the mesh is not crushed. 
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Figure 5. Computational mesh 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 6. Pressure evolution at the points A and B 
 

 
Figures 6 and 7 show the pressure evolution at two points obtained by the method adopted here 
and ASTER-SATURNE code respectively. We can observe that our results agree well with those 
reported by EDF. Moreover, the frequency of the response is the same frequency as that the 
imposed velocity defined by Eq.(17). This study seems to enable us to validate the present 
numerical method of resolution for the equations described in the paragraph 1 for the rigid body. 
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Conclusion 
 
In this paper, an ALE formulation for viscous incompressible flow has been presented. The finite 
element spatial discretization is used to solve the problem. However, for the advection term of 
the Navier-Stokes equation, a first order Godunov method is used. For the computation of the 
liquid dynamic response, the projection method defined by Gresho is implemented in order to 
handle the pressure. Numerical test shows that the projection method is an appropriate one for 
predicting fluid-structure interaction problem. The extension of this work will be the 
computation of fluid forces that act on a deformable structure in order to take into account the 
real structural behaviour. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Pressure evolution at the points A and B (ASTER-SATURNE) 
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