Performance of Large Scale Implicit Crash Analysis on Multicore Processor Systems

Yih-Yih Lin, PhD

8th European LS-DYNA Users Conferences, Strasbourg—May 2011

Introduction

Main Topics

- Scalability and Performance
 - Core Placements
 - Cluster Network Interconnects
- Memory

Additional Information

- Power usage
- Rack space

Models Used in this Study

- Cylinders of 3-DOF nodes
 - Cyl1e6: 1 million nodes, 3 MDOF
 - Cyl2e6: 2 million nodes, 6 MDOF
 - Cyl4e6: 4 million nodes, 12 MDOF

Systems Used in this Study

Two HP ProLiant DL980 Servers

Architecture: 8 8-core Intel Xeon 7650 (2.3 GHz) Processors Cache: 8 MB/processor, shared Memory: Shared; 1TB & 0.5TB respectively

Two HP ProLiant BL2x220c Clusters

Architecture: Two 6-core Intel Xeon 5670 (2.3 GHz) Processors Cache: 12 MB/processor, shared Memory: Shared; 24GB/node & 48GB/node respectively Interconnect: InfiniBand QDR and GigE

Terms and Notations

- mP/nC: A server (or node) that comprises m processors with a total of n cores
- Core count: Number of parallel processes
- Rank: Number of MPI processes
- SxRxN: A Hybrid LS-DYNA job with S SMP threads per rank, R ranks per node, and N nodes

Scalability

Performance of Hybrid LS-DYNA

Pure MPI LS-DYNA vs. Hybrid LS-DYNA

Performance of Hybrid LS-DYNA

Process Placement

Simplified Intel X5670 Processor

Effects of Varying Number of SMP Threads

Memory Requirement

Minimal Per-node Memories for In-core Solutions

Minimal Per-node Memories for In-core Solutions

Minimal Per-node Memories for In-core Solutions

Minimal Per-node Memories for In-core Solutions with Various Number of Nodes

Minimal Number of Nodes for In-core Solutions with Various Problem Sizes

Elapsed Time and Per-node Memory Requirement: Full vs. Half Loaded, Same Core Count at192

Cluster Network Interconnects

Gigabit Ethernet

- Latency : 43 µs
- Bandwidth: 128 MB/s

InfiniBand (QDR)

- Latency: $< 2 \ \mu s$
- Bandwidth: 3 GB/s

IB versus GigE Performance

Top Five MPI Routines Times vs. Elapsed Time

Power and Other Costs

Power Usages

Energy Efficiency: 3 MDOF

Energy Efficiency: 6 MDOF

Rack Space

	Vertical Space		
	of Standard	No. of	Total Vertical Space
	Rack (cm)	Units	(cm)
DL980 Rack	35.36	8	283
C7000 Server Enclosure	18.17	10	182
Ratio between the above two total vertical spaces			1.6

Conclusion

- Both Hybrid and pure MPI LS-DYNAs scale well for implicit analysis.
- The optimal number of threads per rank for Hybrid LS-DYNA is the number of cores that share the same cache in a processor.
- Hybrid LS-DYNA in general requires less memory for in-core solutions than Pure MPI LS-DYNA.
- Tow ways to meet memory requirement for Hybrid LS-DYNA on a cluster:
 - Decreasing the number of SMP threads per rank
 - Increasing the number of nodes
- Speed of interconnect is important. InfiniBand is recommended.
- A large shared-memory system, containing more memory per core than a smaller shared-memory system, requires less total number of processors to avoid out-of-core solutions.
- But the latter is more energy efficient than the former.

