Numerical Analysis of High Speed Roller Hemming Processes

Dr. Jens Baumgarten, ME Strategies & Planning
Dr. Peter Plapper, ME Body
Bamberg, October 20, 2005

Outline

- Introduction
- Motivation
- Target
- Approach
- Results
- Conclusion and Outlook
Introduction
Roller hemming process

Principle of roller hemming

- Flange is bent in a continuous process using a robot-manipulated roller
- Incremental forming process

2-step 90°-roller hemming process

![Diagram of 2-step 90°-roller hemming process]

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 3

Introduction
Roller hemming technology implementation

<table>
<thead>
<tr>
<th>Model</th>
<th>Components to be roller hemmed</th>
<th>Plant</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tigra</td>
<td>Doors, hood, roof, tailgate</td>
<td>Heuliez</td>
<td>Medium</td>
</tr>
<tr>
<td>Zafira</td>
<td>Hood</td>
<td>Bochum</td>
<td>High</td>
</tr>
<tr>
<td>Combo</td>
<td>Tailgate</td>
<td>Azambuja</td>
<td>Low</td>
</tr>
<tr>
<td>Saab Cadillac</td>
<td>Doors, hood, tailgate</td>
<td>Trollhättan</td>
<td>Low</td>
</tr>
<tr>
<td>Astra RHT</td>
<td>Doors, a-pillar</td>
<td>Antwerp</td>
<td>Low</td>
</tr>
<tr>
<td>Saab 606</td>
<td>Hood, tailgate</td>
<td>Trollhättan</td>
<td>Medium</td>
</tr>
<tr>
<td>Next Generation</td>
<td>All closures</td>
<td>Rüsselsheim</td>
<td>High</td>
</tr>
<tr>
<td>Vectra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2005 Copyright by DYNA more GmbH

GME’s Vision
Introduction
High speed roller hemming technology

“Dynamic High Speed Roller Hemming” tool with driven rollers (patent pending)

Facilitates hemming speeds of up to 1400 mm/s

Experimental straight-edge / straight-surface process for fundamental investigations

Modeled in this study

Motivation
Pre-hem wrinkling
- Wrinkles can occasionally be not fully flattened out during final-hemming
- Impairs the final part’s quality in terms of surface and flushness conditions

One of the most significant problems associated with roller hemming

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 5
Target

Provide tangible recommendations for optimized process design to minimize pre-hem wrinkling

Understand underlying physical processes

Systematically identify influence of major process parameters

Current situation:
• Literature/suppliers yield very limited data
• In-depth theoretical analysis still to be performed

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 7

Approach

Sensitivity analysis by means of FEA

Investigated major process parameters

• Pre-hem roller diameter d:
 \(d = 20\text{mm}; 40\text{mm}; 60\text{mm} \)

• Pre-hem roller taper angle \(\alpha \):
 \(\alpha > 0^\circ; \alpha = 0^\circ; \alpha < 0^\circ \)
 \((\alpha_4 = -60^\circ; \alpha_5 = -75^\circ) \)

• Pre-hem roller lead angle \(\beta \):
 \(\beta < 0^\circ; \beta = 0^\circ; \beta > 0^\circ \)

• ...

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 8
Approach

Model

- Workpiece:
 - Length of „inner“ and „outer“ = 300mm
 - Sheet thickness „outer“ = 0.75mm
 - Sheet thickness „inner“ = 1.7mm
 - Material: mild steel

Geometries of pre- and final-hem roller vary in the course of the sensitivity study

Approach

FEA details

Numerical parameters
- LS-DYNA (Version 970, MPP, single precision)
- Shell elements (type 16, full integration, 7 thru-thickness integration points)
- Material model 24: piecewise linear plasticity

Meshing guidelines for hem radius
- 4 elements on 90° hem radius
- Element size = 0.2mm
- Aspect ratio = 1.0

Computing resources
- p550 (IBM) with 4 Power5 CPUs, 4x4=16Gb Memory
- Expense: approx. 6.4 hours

© 2005 Copyright by DYNAmore GmbH
Results
Pre-hem wrinkling

Evolution of stresses [MPa] in z-direction (tangential stresses) in hem flange during pre-hemming simulation (roller diameter = 20mm; taper angle = 0°; lead angle = 0°)

Wrinkling phenomena can be reproduced using explicit FEA

Adam Opel AG

Results
Pre-hem wrinkling

Local elongation of flange causes tangential compressive stresses

Tangential compressive stresses likely to be cause of wrinkling

Tangential tensile stresses of up to 440 MPa

Tangential compressive stresses of up to 320 MPa

Stresses [MPa] in z-direction (tangential stresses) in hem flange during pre-hemming simulation (roller diameter = 20mm; taper angle = 0°; lead angle = 0°)

Adam Opel AG
Results

Pre-hem Elongation of hem flange edge

- Local elongations sum up to substantial values of up to 5%
- Large roller radii of curvature lead to low elongation values

<table>
<thead>
<tr>
<th>Process parameters</th>
<th>d [mm]</th>
<th>β [°]</th>
<th>α [°]</th>
<th>d [mm]</th>
<th>β [°]</th>
<th>α [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Pre-hemming stage of roller hemming

Δl and l

Results

Pre-hem wrinkle depth

- Minimum wrinkle depth = 0.15mm
- Maximum wrinkle depth = 1.71mm

Adam Opel AG

ME Strategies & Planning / 20 October 2005 / Page 13
Results
Pre-hem wrinkle depth

- Occurrence of large wrinkle depths coincides with large elongations of hem flange edge
- Elongation of flange causes tangential compressive stresses = cause of wrinkling
- Measures fit to reduce flange elongation lead to lower tendency towards wrinkling

<table>
<thead>
<tr>
<th>Process parameters</th>
<th>(d) [mm]</th>
<th>(\alpha) [°]</th>
<th>(\beta) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r5</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r8</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 15

Results
Validation

- Simulation accuracy calls for improvement
- Good qualitative agreement
- Simulation accuracy calls for improvement
- Process parameters investigated do not affect wrinkle width

<table>
<thead>
<tr>
<th>Process parameters</th>
<th>(d) [mm]</th>
<th>(\alpha) [°]</th>
<th>(\beta) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>r5</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r14</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r23</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 16
Conclusion and outlook

Conclusion
• Straight-edge/straight-surface high speed roller hemming process modeled using LS-DYNA
• Pre-hem wrinkling phenomena reproduced
• Good qualitative agreement simulation/experiment
• Recommendations for an optimized process design developed and validated

Outlook
• Model curved-edge/curved-surface processes
• Improve simulation accuracy
• Model production process

Adam Opel AG
ME Strategies & Planning / 20 October 2005 / Page 17