A Generalized Damage and Failure Formulation for SAMP

Paul Du Bois¹, Markus Feucht², André Haufe³, Stefan Kolling²

¹ Consultant, Offenbach, Germany

² DaimlerChrysler AG, Sindelfingen, Germany

³ Dynamore GmbH, Stuttgart, Germany

A Generalized Damage and Failure Formulation for SAMP

Paul Du Bois¹, Markus Feucht², André Haufe³ & Stefan Kolling²

¹ Consultant, Offenbach
 ² DaimlerChrysler AG, Sindelfingen
 ³ Dynamore GmbH, Stuttgart

5th German LS-DYNA Forum, Ulm, 12-13 October 2006

Simulation of Failure in Shell-like Structures

- Very high and ultra high strength steels may exhibit reduced ductility
- Plastic trim panels fail during side impact
- Possibility of failure during crash events needs to be considered in numerical simulations
- The technology of simulating failure is still in it's infancy

 Damage and failure law: verification and validation process is needed to calibrate a damage and/or failure law to physical experiments

Aspects of Failure Simulation

- Consideration of deformation history: stress/strain path during manufacturing may influence failure during crash event
- Physical material data are needed up to failure, true hardening data beyond necking strain can only be obtained through reverse engineering

Today's Presentation

- Simulation of failure has many aspects
- Today we only compare failure and damage models implemented in LS-DYNA
- It should be emphasized that all failure and damage models will in practice need to be regularized

Failure Models in LS-DYNA

- Compare some elementary failure models that are implemented in LS-DYNA
- Focus on deformation based criteria
- Some of the models considered are available for shell elements only
- We are interested in thin panels
- Plane state of stress can be assumed

Failure Models in LS-DYNA

		Dependency of		
	FAILURE CRITERION(S)	Load path	Strain rate	State of stress
MAT_24	$arepsilon_{p}\leqarepsilon_{pf}$	yes	no	no
MAT_123	$\varepsilon_{r} \leq \varepsilon_{rf}$	yes	no	no
	$\varepsilon_1 \leq \varepsilon_{1f}$	no	no	no
	$arepsilon_3 \leq arepsilon_{3f}$	no	no	no
MAT_15	$d=\int\!rac{darepsilon_p}{d_1+d_2e^{d_3rac{p}{\sigma_{vm}}}}\leq 1$	yes	yes	yes

Failure Models in LS-DYNA				
		Dependency of		
	FAILURE CRITERION(S)	Load path	Strain rate	State of stress
MAT_39	$arepsilon_{_{1}}\leqarepsilon_{_{1fld}}\left(arepsilon_{_{2}} ight)$	no	no	yes
MAT_89	$arepsilon_1 \leq arepsilon_{1f} \left(\ln \dot{arepsilon} ight)$	no	yes	no
MAT_15	$egin{aligned} &d = \int rac{darepsilon_p}{d_1 igg(1+d_4\lnrac{\dotarepsilon}{\dotarepsilon_0}igg)} \leq 1 \ &VP = 0 \Rightarrow \dotarepsilon = \dotarepsilon_{eff} \ &VP = 1 \Rightarrow \dotarepsilon = \dotarepsilon_p \end{aligned}$	yes	yes	yes

Failure Models in LS-DYNA

- As failure criteria we can distinguish:
 - Principal strain
 - Thinning
 - Equivalent plastic strain
 - Forming Limit Diagram (FLD)
 - Johnson-Cook
- With or without rate dependency

The Failure Model(s) in SAMP					
LCID_D	DC		EQFAIL	LCID_TRI	failure variable
0	>0	${\cal E}_{\it pf}$	>0	none	${arepsilon}_p$
0	0	∞	>0	none	${\mathcal E}_p$
0	<0	$g(\dot{arepsilon}_{_{p}})$	>0	$f\left(rac{p}{\sigma_{\scriptscriptstyle vm}} ight)$	${\mathcal E}_p$
0	<0	$g(\dot{arepsilon}_{_{p}})$	<0	$f\left(rac{p}{\sigma_{\scriptscriptstyle VM}} ight)$	$\int rac{darepsilon_p}{gf}$

SAMP Implementations : Total (old) Formulation : EQFAIL>0

$$d=\int darepsilon_{_{p}}\,=\,arepsilon_{_{p}}\,\leq\,arepsilon_{_{pf}}ig(\dot{arepsilon}_{_{p}}ig)fig(rac{p}{\sigma_{_{vm}}}ig)=d_{_{c}}$$

failure variable is the equivalent plastic strain

critical damage equals the equivalent plastic strain at failure and depends upon the strain rate and the state of stress

this formulation will be equivalent to EQFAIL<0 iff

* the loading is proportional

or

* the failure plastic strain is a constant

SAMP Implementations :Incremental Formulation : EQFAIL<0</td> $f\left(-\frac{1}{3}\right) = 1$ critical damage is a constant
and is computed internally

$$d = \int rac{arepsilon_{\it pf}\left(0
ight)f\left(-rac{1}{3}
ight)}{arepsilon_{\it pf}\left(\dot{arepsilon}_{\it p}
ight)f\left(rac{p}{\sigma_{\it vm}}
ight)}darepsilon_{\it p} \le arepsilon_{\it pf}\left(0
ight)f\left(-rac{1}{3}
ight) = arepsilon_{\it pf}\left(0
ight) = d_{
m c}$$

for quasi-static uniaxial tension the failure variable is equal to the equivalent plastic strain:

$$d=\int rac{arepsilon_{_{pf}}\left(0
ight)f\left(-rac{1}{3}
ight)}{arepsilon_{_{pf}}\left(\dot{arepsilon}_{_{p}}
ight)f\left(rac{p}{\sigma_{_{vm}}}
ight)}darepsilon_{_{p}}=\int darepsilon_{_{p}}=arepsilon_{_{p}}\leqarepsilon_{_{pf}}\left(0
ight)f\left(-rac{1}{3}
ight)=d_{_{e}}$$

The Failure Model(s) in SAMP

The Johnson-Cook failure criterion is recovered if:

$$\begin{split} LCID_D &= 0\\ LCID_TRI > 0 \Rightarrow f\left(\frac{p}{\sigma_{vm}}\right) = \frac{d_1 + d_2 e^{d_3 \frac{p}{\sigma_{vm}}}}{d_1 + d_2 e^{-d_3 \frac{1}{3}}}\\ DC &< 0 \Rightarrow g\left(\dot{\varepsilon}\right) = \left(d_1 + d_2 e^{-d_3 \frac{1}{3}}\right) \left(1 + d_4 \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)\\ EQFAIL &< 0 \end{split}$$

Ductile Damage

	effective geometry	effective stress	damaged modulus
strain equivalence	$A = A_{\scriptscriptstyle eff} (1 - d)$	$\sigma = \sigma_{\rm eff} (1-d)$	$E_d = E(1-d)$
energy equivalence	$V = V_{\rm eff} \left(1 - f \right)$	$\sigma = \sigma_{\scriptscriptstyle eff} (1-f) rac{\dot{arepsilon}_{_{p,eff}}}{\dot{arepsilon}_{_{p}}}$	$E_{_d} = E$
general	$egin{aligned} A &= A_{\scriptscriptstyle e\!f\!f} \left(1-d ight) \ V &= V_{\scriptscriptstyle e\!f\!f} \left(1-f ight) \end{aligned}$	$\sigma = \sigma_{\scriptscriptstyle eff} (1-f) rac{\dot{arepsilon}_{\scriptscriptstyle p, eff}}{\dot{arepsilon}_{\scriptscriptstyle p}}$	$E_d = E(1-d)$

Damage Models in LS-DYNA

	DAMAGE EVOLUTION	Path dependent	Non- proportional loading
MAT_81	$d=d\left(\varepsilon_{_{p}}\right)$	yes	no
MAT_81	$d=\int\limits_{arepsilon_{pd}}^{arepsilon_p} d_{c} rac{darepsilon_p}{arepsilon_{pr}-arepsilon_{pd}}$	yes	no
MAT_105	$d = \int_{\varepsilon_{pd}}^{\varepsilon_{p}} \frac{\sigma_{vm}^{2} \left(\frac{2}{3}(1+\nu) + 3(1-2\nu)\left(\frac{\sigma_{H}}{\sigma_{vm}}\right)^{2}\right)}{2E(1-d)^{2}S} d\varepsilon_{p}$	yes	yes

Damage Models in LS-DYNA

	Damage Evolution	Path dependent	Non- proportional loading
MAT_187	$d=d(\varepsilon_{_{p}})$	yes	no/yes
	$d \leq d_{\scriptscriptstyle c}$		
MAT_120			
	$f = f_0 + \int (1-d)\dot{arepsilon}_{vp} + \int rac{f_N}{s_N\sqrt{2\pi}} e^{-rac{1(arepsilon_{-S_N})}{s_N}ec{arepsilon}}\dot{arepsilon}_p$	yes	yes
	$\int f \qquad \qquad f \leq f_e$		
	$egin{aligned} f^{*} = egin{cases} & rac{1}{f_{e}} - rac{q_{_{1}}}{q_{_{F}}} - f_{_{c}} \ (f - f_{_{c}}) & f > f_{_{c}} \end{aligned}$		
	$d\coloneqq q_{\scriptscriptstyle 1}f^*\left(f_{\scriptscriptstyle F}\right)\leq d_{\scriptscriptstyle c}=1$		

Damage Models in LS-DYNA

	Damaged yield function
MAT_81 Mat_105	$\Phi = rac{\sigma_{\scriptscriptstyle vm}}{\left(1-d ight)} - \sigma_{\scriptscriptstyle y, eff}\left(arepsilon_{\scriptscriptstyle p, eff} ight)$
	$\Phi=\sigma_{\scriptscriptstyle vm}^{\scriptscriptstyle 2}-(1-d)^{\scriptscriptstyle 2}\sigma_{\scriptscriptstyle y,{\scriptscriptstyle eff}}^{\scriptscriptstyle 2}ig(arepsilon_{\scriptscriptstyle p,{\scriptscriptstyle eff}}ig)$
MAT_120	$egin{aligned} \Phi &= rac{\sigma_{vm}^2}{\sigma_{y,eff}^2} + 2q_1 f^* \coshiggl(rac{q_2 (-3p)}{2\sigma_{y,eff}}iggr) - 1 - q_1^2 f^{*2} \ \cosh x &pprox 1 + rac{x^2}{2} \ \Phi &= \sigma_{vm}^2 + q_1 f^* q_2^2 rac{9}{4} p^2 - \left(1 - q_1 f^* ight)^2 \sigma_{y,eff}^2 \end{aligned}$

Damage Models in LS-DYNA

	Damaged yield function
MAT_187	$\Phi = \sigma_{vm}^2 - A_2 p^2 - (1 - d) A_1 p - (1 - d)^2 A_0$
MAT_120	$\Phi = \sigma_{\scriptscriptstyle vm}^{\scriptscriptstyle 2} + q_{\scriptscriptstyle 1} f^{*} q_{\scriptscriptstyle 2}^{\scriptscriptstyle 2} rac{9}{4} p^{\scriptscriptstyle 2} - \left(1 - q_{\scriptscriptstyle 1} f^{*} ight)^{\scriptscriptstyle 2} \sigma_{\scriptscriptstyle y, e\!f\!f}^{\scriptscriptstyle 2}$
	$\Phi = \sigma_{_{vm}}^{_2} + dq_{_2}^{_2} rac{9}{4} p^2 - (1-d)^2\sigma_{_{y,e\!f\!f}}^{_2}$
	$A_{\scriptscriptstyle 0}=\sigma_{\scriptscriptstyle y,{\scriptscriptstyle eff}}^2$ $A_{\scriptscriptstyle 1}=0$
	$A_{2} = -dq_{2}^{2}rac{9}{4} = -q_{1}f^{*}q_{2}^{2}rac{9}{4} eq const$
	$A_0 = \sigma_{y,eff} A_1 = \sigma \ A_2 = -dq_2^2 \frac{9}{4} = -q_1 f^* q_2^2 \frac{9}{4} \neq const$

Damage Model(s) in SAMP

EQFAIL	damage	failure
>0	$d=d\bigl(\varepsilon_{_{p}}^{^{t}}\bigr)$	$d=d\big(\varepsilon_{_{p}}^{^{t}}\big)\leq d_{_{c}}$
>0	$d=d\big(\varepsilon_{\scriptscriptstyle p}^{\scriptscriptstyle t}\big)$	$d = dig(arepsilon_{p}^{t}ig) \leq d_{\scriptscriptstyle c}ig(\dot{arepsilon}_{p}^{t}ig)figg(rac{p}{\sigma_{\scriptscriptstyle VM}}igg)$
<0	$d=d\big(\varepsilon_{\scriptscriptstyle p}^{\scriptscriptstyle t}\big)$	$d = \int rac{dig(arepsilon_{_{pf}}^{t}(0)ig)}{dig(arepsilon_{_{pf}}^{t}ig)fig(rac{p}{\sigma_{_{rm}}}ig)} rac{\partial d}{\partialarepsilon_{_{p}}^{t}}darepsilon_{_{p}}^{t} \leq dig(arepsilon_{_{pf}}^{t}(0)ig)$
<0	$d = \int \! rac{dig(arepsilon_{p\!f}^t(0)ig)}{dig(arepsilon_{p\!f}^tig(\dotarepsilon_p^tig)fig(rac{p}{\sigma_{vm}}ig)ig)} \! rac{\partial d}{\partialarepsilon_p^t}darepsilon_p^t$	$d = \int rac{dig(arepsilon_{p_f}^t(0)ig)}{dig(arepsilon_{p_f}^tig(\dotarepsilon_p^tig)igf(rac{p}{\sigma_{vm}}ig)igg)} rac{\partial d}{\partialarepsilon_p^t}darepsilon_p^t \leq dig(arepsilon_{p_f}^t(0)ig)$

