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Abstract:

Reliable prediction of the behaviour of structures made from polymers is a topic under
considerable investigation in engineering practice. Especially, if the structure is subjected
to dynamic loading, constitutive models considering the mechanical behaviour properly
are not available in commercial finite element codes yet. A constitutive model is derived
including important phenomena like necking, crazing, strain rate dependency, unloading
behaviour and damage. In particular, different yield surfaces in compression and tension
and strain rate dependent failure, the latter with damage induced erosion, are taken
into account. With the present formulation, standard verification tests can be simulated
successfully. Also, an elastic damage model can be used to approximate the unloading
behaviour of thermoplastics adequately.
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1 Introduction

In engineering practice, the commonly used model for thermoplastics is a visco-plastic ap-
proach based on von Mises plasticity [2]. However, most thermoplastics exhibit a different
behaviour in tension, compression and shear, so the assumption of a von Mises yield locus
is not justifiable. Furthermore crazing, a localized deformation process which goes along
with a permanent increase of volume and a low biaxial strength, can’t be modelled so
far. To simulate crazing it may therefore be desirable to consider biaxial test data in the
numerical model. In the last few years, a lot of theoretical work has been performed to
find an appropriate yield surface for the description of thermoplastics, see [18], [11], [24]
and [25] among others. In the present material model termed PLYS (PIECEWISE LIN-
EAR YIELD SURFACE), we provide a pressure dependent multi-surface C0-differentiable
yield locus, which consists of up to four Drucker-Prager cones, depending on the available
experimental data. To generate this yield locus test data from uniaxial tension and com-
pression tests, from a shear test and from biaxial tension and (if available) compression
tests can be regarded. Another drawback is the assumption of plastic incompressibility
which is clearly not correct for thermoplastics. Here a plastic potential with a quadratic
dependency in pressure is used to account for different volumetric plastic straining under
compression and tension. Strain rate dependency for the yield surface as well as for the
failure onset is another key property. Furthermore, a simple but effective damage formu-
lation that allows smooth fading of elements, that are supposed to fail, is included. The
present material model PLYS is implemented as a user subroutine in the explicit solver
LS-DYNA. However, the results are transferable to other solvers.

2 Constitutive model

Within PLYS additive decomposition of strain ∆ε = ∆εel + ∆ε̄pl is assumed. This leads
to an elastic stress increment ∆σ = C : ∆εel where the elastic constitutive tensor readsC = 2Gδ⊗δ−(K− 2

3
G)I. Here G is the shear and K the bulk modulus, δ and I represent

the second and fourth order unit tensor, respectively. The plastic strain components are
calculated by a classical elastic predictor plastic corrector scheme.

2.1 Definition of the yield surface

The yield surface is divided into up to four Drucker-Prager-cones, depending on the
available experimental data:

f(p, q, ε̄pl, ˙̄εpl) = q − β(ε̄pl, ˙̄εpl)p − c(ε̄pl ˙̄εpl) (1)
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with

β(ε̄pl) = 3
σt

y(ε̄pl)−σbt
y (ε̄pl)

2σbt(ε̄pl)−σt
y(ε̄pl)

c(ε̄pl ˙̄εpl) = ξ( ˙̄εpl)[σt
y(ε̄

pl) + β(ε̄pl)
σt

y(ε̄pl)

3
] for p < − q

3

β(ε̄pl) = −3
σs

y(ε̄pl)−σt
y(ε̄pl)

σt
y(ε̄pl ) c(ε̄pl ˙̄εpl) = ξ( ˙̄εpl)σs

y(ε̄
pl) for − q

3
≤ p < 0

β(ε̄pl) = 3
σc

y(ε̄pl)−σs
y(ε̄pl)

σc
y(ε̄pl)

c(ε̄pl ˙̄εpl) = ξ( ˙̄εpl)σs
y(ε̄

pl) for 0 ≤ p < q

3

β(ε̄pl) = 3
σbc

y (ε̄pl)−σc
y(ε̄pl)

2σbc
y (ε̄pl)−σc

y(ε̄pl)
c(ε̄pl ˙̄εpl) = ξ( ˙̄εpl)[σc

y(ε̄
pl) − β(ε̄pl)

σc
y(ε̄pl)

3
] for q

3
≤ p

(2)

Here p = −1
3
trσ = −1

3
I1 represents the hydrostatic axis (I1 is the first invariant of the

stress tensor σ) and q =
√

3
2
s : s = 3J2 the deviatoric axis (J2 is the second invariant

of the stress deviator s = σ − 1
3
trσδ). The parameter β(ε̄pl) is calculated from the

hardening curves σt
y(ε̄

pl ˙̄εpl), σc
y(ε̄

pl), σs
y(ε̄

pl), σbt
y (ε̄pl) and σbc

y (ε̄pl) which can be obtained
directly from uniaxial tension and compression tests, from shear tests and from biaxial
tension and (if available) compression tests. The factor ξ( ˙̄εpl) is obtained from dynamic
uniaxial tensile test and regards the strain rate dependency of the material (see section
”Rate effects”). The yield surface is illustrated in Figure 4. Although experimental data
of up to 5 material tests can be regarded to assemble the piecewise linear yield surface, the
most important and the most reliable material test is still the uniaxial tensile test. There
a nearly pure uniaxial stress state can be assumed during the whole test. To account
for the effect, that most polymers behave stiffer under compression than under tension,
test data from compression tests are needed. These tests are more complicated than
uniaxial tensile tests and a certain interaction with tension and shear cannot be avoided
completely. This applies also for biaxial compression tests and so these test data, even
if they are available, should be used with care. But in fact a pure biaxial stress state is
not only hard to achieve in an experiment, but also in simulating structural parts and so
these test data are of minor importance and can first be neglected. To account for the
effect of crazing, it is desirable to include test data from biaxial tensile tests. Crazing
accompanies with a permanent increase of volume (volumetric plastic straining) and a
low biaxial strength. Some polymeric materials exhibit a different behaviour also under
pure shear stress states. Therefore also test data from pure shear tests can be regarded.

2.2 Hardening formulation

In the present material model PIECEWISE LINEAR YIELD SURFACE (PLYS) the
hardening formulation is fully tabulated and consequently the user can directly input
measurement results from uniaxial tension, uniaxial compression, shear tests, biaxial ten-
sion and (if available) biaxial compression tests. In the material model load curves giving
the yield stress as a function of the corresponding plastic strain are needed, but in exper-
iments mostly the yield stress over the total strain is measured. So, assuming an additive
decomposition of the strain increments ∆ε = ∆εel + ∆ε̄pl, the experimentally obtained
hardening curves must be modified by just subtracting the elastic strain component from
the total strain increment as shown in Figure 1. So all available test data can be feed
directly into the material model. No fitting of coefficients is required. The test results,
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that are reflected in the load curves, will be used exactly by PLYS without fitting to
any analytical expression. Thus, there is no need of time consuming parameter identifi-
cation. In the material card for PLYS LOADCURVE-ID’s for up to 5 hardening curves
(uniaxial tension and compression, biaxial tension and compression and shear tests) can
be assigned, but the programm recognizes the available LOADCURVES. If there are not
all of the test data available the program recognizes the missing experimental data auto-
matically and the piecewise linear yield surface is assembled from the provided test data.
That means if there are LCID’s only assigned for test data from uniaxial compression
tests and uniaxial tensile tests a simple DRUCKER-PRAGER material model is realized
and if only test data from uniaxial tensile tests are provided, the von Mises yield locus
is recovered. This procedure allows a straight forward treatment in engineering practise.
The load curves that are expected as input are briefly described here:

σy
bi,cσy

bi

εbi = ln
l
l0

εp
bi = εbi − (1 − ν)σbi

E
εp

shear =εshear− σshear

2G

εuni = ln
l
l0

σy
bi,tσy

uni,t

σy
uni

σy
uni,c

εp
uni = εuni − σuni

E

σy
shear

Figure 1: Uniaxial, biaxial and shear hardening curves from experiments

Up to five table lookups will be performed in each iteration during each time step. As
input data serves the plastic strain for uniaxial and biaxial tension and compression and
for shear. The table lookup delivers the current yield value as well as the tangent with
respect to the plastic strain:

εp
uni,t ⇒ σy

uni,t,
∂σy

uni,t

∂εp
uni,t

, εp
uni,c ⇒ σy

uni,c,
∂σy

uni,c

∂εp
uni,c

,

εp
bi,t ⇒ σy

bi,t,
∂σy

bi,t

∂εp
bi,t

, εp
bi,c ⇒ σy

bi,c,
∂σy

bi,c

∂εp
bi,c

, εp
shear ⇒ σy

shear,
∂σy

shear

∂εp
shear

.

Care must be taken to ascertain the von Mises stress σvm and the equivalent plastic strain
ε̄pl from the experimentally obtained data. This is done in the material routine. Table 1
shows the relations between the stresses and strains obtained from experiment and the
von Mises stress σvm or q and the equivalent plastic strain.

2.3 Rate effects

Plastics are usually highly rate dependent. A proper visco-plastic consideration of the rate
effects is therefore important to the numerical treatment of the material law. Rate effects
can only be derived sufficiently from uniaxial tensile tests, therefore data to determine
the rate dependency are based on uniaxial dynamic testing. Simplifying, it is assumed,
that the strain rate sensitivity in all stress states is the same as in tension. Otherwise
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experiment hydro-static v.Mises equivalent plastic volumetric plastic

pressure stress strain strain

p q = σvm ε̄pl εpl
v

uniaxial tension −1
3
σt σt

2
3
(1 + νp)ε

p
t (1 − 2νp)ε

p
t

uniaxial compression 1
3
σc σc

2
3
(1 + νp)ε

p
c −(1 − 2νp)ε

p
c

biaxial tension −2
3
σbt σbt

2
3

1+νp

1−νp
εp

bt 21−2νp

1−νp
εp

bt

biaxial compression 2
3
σbc σbc

2
3

1+νp

1−νp
εp

bc −21−2νp

1−νp
εp

bc

pure shear 0
√

3σs
2
√

3
|εp

s| 0

Table 1: Relations between experimental data and computational values

tests at different strain rates for all other material tests have to be performed. The strain
rate dependency obtained from tensile tests is transferred via a factor ξ( ˙̄εpl) to the other
quasi-static hardening curves:

ξ( ˙̄εpl) =
σ(ε̄pl, ˙̄εpl)

σ(ε̄pl, ˙̄εpl = 0)
(3)

If dynamic tests are available , the load curve defining the yield stress in uniaxial tension
is simply replaced by a table definition. Similar to MAT 24 in LS-DYNA this table
contains multiple load curves corresponding to different values of the plastic strain rate
as illustrated in Figure 2. Input data for the table lookup are the current uniaxial plastic

σt

ε̇
p
t ≈ ε̇t

(εt = ln
l
l0

)

εp
t = εt − σt

E

σt

(εt = ln
l
l0

)

ε̇t

Figure 2: Tensile hardening curve from dynamic tensile test

strain and the current uniaxial plastic strain rate, the table lookup delivers the yield value
in uniaxial tension and the tangents with respect of the plastic strain and the plastic strain
rate:

εp
uni,t, ε̇p

uni,t, ⇒ σy
uni,t,

∂σy
uni,t

∂εp
uni,t

,
∂σy

uni,t

∂ε̇p
uni,t

(4)

 
 

 
© 2007 Copyright by DYNAmore GmbH 

 

6. LS-DYNA Anwenderforum, Frankenthal 2007 Crash II - Schadensmodellierung

B - II - 17



2.4 Plastic potential

In the present material model, PLYS, a non-associated flow rule is assumed. The plastic
potential gives the direction m for the plastic flow. So the plastic strain rate is given as:

ε̇p = λ̇ ‖m‖ = λ̇

∥

∥

∥

∥

∂g

∂σ

∥

∥

∥

∥

,

∥

∥

∥

∥

∂g

∂σ

∥

∥

∥

∥

=

√

∂g

∂σ
:

∂g

∂σ
(5)

whereas m is the direction of the plastic flow given by the plastic potential g and λ̇ is
the rate of the plastic multiplier. The volumetric plastic strain rate, the deviatoric plastic
strain rate and the equivalent plastic strain rate are defined as:

ε̇pv = tr(ε̇p) =
λ̇

‖ ∂g

∂σ ‖
tr

( ∂g

∂σ

)

(6)

ε̇pd = ε̇p −
ε̇vp

3
δ (7)

˙̄εp =

√

2

3
ε̇pd:ε̇pd =

λ̇

‖ ∂g

∂σ ‖

√

2

3

∂g

∂σ

∣

∣

∣

∣

d

:
∂g

∂σ

∣

∣

∣

∣

d

(8)

The plastic potential g is defined as:

g =
√

q2 + αp2 (9)

The amount of dilatancy or compression, i.e. the increase or decrease in material volume
due to yielding, can be controlled with the flow parameter α, whereas α correlates to the
plastic poisson ratio:

νp =
9 − 2α

18 + 2α
⇒ α =

9

2

(

1 − 2νp

1 + νp

)

(10)

Plausible flow behaviour means that 0 ≤ α ≤ 9
2
⇒ 0 ≤ νp ≤ 0.5. If the flow parameter α

is set to zero, there is no change in material volume when yielding occurs and the von Mises
flow potential is recovered. It is emphasized that the flow parameter α, respective νp is not
a material constant. The flow parameter changes with progressing plastic straining. For
a wide range of thermoplastics the Poisson ratio at the beginning of plastic deformation is
between 0.4 and 0.5 and with further plastic deformation νp decreases and, especially when
crazing occurs, νp reduces to zero. So there is a nearly foam-like behaviour when crazing
occurs. To account for the experimentally observed effect of a non-constant plastic Poisson
ratio, in PLYS the value of the plastic Poisson ratio can be input either as a constant or
as a load curve in function of the uniaxial plastic strain. The rate of the plastic strain
tensor, the rate of the deviatoric plastic strain tensor and the volumetric plastic strain
rate for the assumed plastic potential g are given as:

ε̇
p =

λ̇

g

(

3

2
s +

1

3
αpδ

)

(11)
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uniaxial tensile test

plastic Poisson ratio from

νp

εt = ln
l
l0

εp
t = εt − σt

E

α < 0

νp > 0.5

νp > 0.5

p

σ2
f = σ2

vm + αp2

α < 0

σvm

α = 0

νp = 0.5

Figure 3: Influence of the flow rule on the plastic Poisson ratio

Here s is the stress deviator and δ is the second order unit tensor. The deviatoric plastic
strain rate is given as:

ε̇
p
dev =

λ̇

g

3

2
s (12)

and the volumetric plastic strain rate is:

ε̇
p
vol =

λ̇αp

g
(13)

The principle of the material model PLYS is summarized in Figure 4.

2.5 Damage

Numerous damage models can be found in the literature. Probably the simplest concept
is elastic damage where a scalar damage parameter (usually written as d) is a function of
the elastic energy and effectively reduces the elastic modulae of the material. In the case
of ductile damage, d is a function of plastic straining and affects the yield stress rather
than the elastic modulae. This is equivalent to plastic softening. In more sophisticated
damage models, d depends on both the plastic straining and the elastic energy (and
maybe other factors) and affects yield stress as well as elastic modulae. (see [9]). In the
present material model PLYS a simple damage model is implemented where the damage
parameter d is a function of plastic strain only. A load curve must be provided by the user
giving d as a function of the true plastic strain under uniaxial tension. The value of the
critical damage dcrit leading to rupture is then the only other required additional input.
The implemented damage model is isotropic. Furthermore the model uses the notion of
the effective cross section, which is the true cross section of the material minus the cracks
that have developed. The effective stress as the force divided by the effective cross section
is defined as

σ =
F

A
, σeff =

F

Aeff

=
F

A(1 − d)
=

σ

(1 − d)
, (14)
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shear

biaxial compr.
uniaxial compr.

biaxial tension
uniaxial tension

ε̇p
t

σy,t

−1.5 1.5
3−3

fn+1(ǫp, ǫ̇p) = 0

fn(ǫp, ǫ̇p) = 0

σy,bt

εp
t

εp
bt

εp
s

εp
c

εp
bc

σy,bc

σy,c

σy,s

q

νp

εp
t

p

gn(ǫp) = 0

gn+1(ǫp) = 0

Figure 4: Scheme of PIECEWISE LINEAR YIELDSURFACE

which allows to define an effective yield stress of

σy,eff =
σy

(1 − d)
, (15)

see[9]. By application of the principle of strain equivalence, stating that if the undamaged
modulus is used, the effective stress corresponds to the same elastic strain as the true stress
using the damaged modulus, one can write:

E =
σeff

εe

, Ed =
σ

εe

= E(1 − d) (16)

Note that the plastic strains are therefore the same:

εp = ε − σeff

E
= ε − σ

Ed

(17)
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No damage will occur under pure elastic deformation with this model. The case of a
material that is perfectly plastic in its undamaged state is illustrated in Figure 5. It can

σ

σeff,n+1

σn+1

ǫ

E

Ed = E(1 − d)

ǫpǫp,fail

σvm,eff = σy

Figure 5: Damage formulation

be seen that the damage parameter effectively reduces the elastic modulus. Consequently
if unloading is performed at different strain values during the uniaxial tensile test, the
different unloading slopes allow to estimate the damage parameter for a given plastic
strain:

d(εpt) = 1 − Ed(εpt)

E
(18)

The damage model will thus be used essentially to fit the unloading behaviour of the ma-
terial. The two stage process of determining input data from a measured true stress/strain
curve is illustrated below. In a first step the damage curve is derived as given in Figure 6.

In a second step the hardening curve is determined in terms of effective stresses (see

ǫpiǫi

σi di

εp = ε − σ
EdEi,d

ǫ

σ d = 1 − Ed

E

ǫ

Figure 6: Determination of damage as a function of plastic strain

Figure 7). As usual the failure strain corresponds to the point where d = 0 and the
rupture strain corresponds to the point where d reaches the critical value dcrit. If the
damage curve is given a negative identification number in the LS-DYNA input, then the
hardening curve data are expected in terms of true stresses and the input preparation
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ǫpiǫi

σi di

Ei,d

ǫ

σ

ǫp

σy,eff

εp = ε − σ
Ed

σy,eff = σ
(1−d)

Figure 7: Conversion from true stress to effective hardening curve

is performed as if there were no damage. In this case the numerically computed stress
values will correspond to the input data and the damage model will seem to affect only
the elastic modulae and thus the unloading and reloading behaviour of the material.

2.6 Failure

ε̄p

σij

ε̄p
rupt

ε̄p
fail( ˙̄ε

p
, ε̄p, p)

Failure is approximated by deletion of ele-
ments dependent on strain rate ˙̄εpl and pres-
sure p. Again, tabulated data of two curves
is used to define ε̄pl

fail = ε̄pl
fail,rate( ˙̄εpl)ξfail,pres(p)

which determines the onset of element dele-
tion. However, the actual deletion of the
element is postponed by the user defined
rupture strain ε̄pl

rupt . In this case the
stress is scaled to σfail = σ (1 − ζfade) where

ζfade =
〈

(ε̄pl − ε̄pl
fail)/ε̄

pl
rupt

〉

in McCauley nota-

tion. The element is finally deleted if ζfade ≥
0.98 holds true. Thus, the effect of fading the failed element smoothly is achieved.

2.7 Plane stress iteration

To apply a three dimensional material model in shell elements, a plane stress iteration is
required. In the material model PLYS a secant iteration is implemented. Therefore two
start values ∆ε1

zz and ∆ε2
zz for the strain increments in thickness direction are needed.

The strain component in zz-direction (thickness direction) is updated in every itera-
tion step, until the stress component in zz-direction vanishes. To assure convergence,
the solution σzz = 0 must lie in the interval [∆ε1

zz, ∆ε2
zz]. That means the condition

σzz(∆ǫ1
zz)σzz(∆ǫ2

zz) < 0 must be fulfilled. The procedure for the plane stress iteration
is illustrated in Figure 8. As a first start value a strain increment is chosen under the
assumption of a three dimensional stress state and a pure elastic step. So the conversion
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of Hooke’s law delivers the first start value for the secant iteration:

∆ǫ1
zz = −σ1

zz + λ(∆ǫxx + ∆ǫyy)

λ + 2µ
(19)

As a second start value a plane stress state and plastic material behaviour are assumed.
So the second start value reads:

∆ǫ2
zz = − νp

(1 − νp)
(∆ǫxx + ∆ǫyy) (20)

∆ǫ3
zz

∆ǫ4
zz

∆ǫzz

∆ǫ1
zz

∆ǫ2
zz

σzz(∆ǫzz)

Figure 8: plane stress iteration: secant
iteration

Algorithm for plane stress iteration:

1. computing first start value ∆ǫ1
zz :

∆ǫ1
zz = −σzz + (K − 2

3
G)(∆ǫxx + ∆ǫyy)

4
3
G + K

⇒ plasticity algorithm ⇒ σ1
zz

2. computing second start value ∆ǫ2
zz :

∆ǫ2
xx = − νp

(1 − ν)
(∆ǫxx + ∆ǫyy)

⇒ plasticity algorithm ⇒ σ2
zz

3. Secant iteration: computing strain increment
∆ǫn+1

zz :

∆ǫn+1
zz = ∆ǫn−1

zz − ∆ǫn
zz − ∆ǫn−1

zz

σn
zz − σn+1

zz

σn
zz

4. checking exit condition:

IF
|∆ǫn

zz − ∆ǫn−1
zz |

|∆ǫn+1
zz | < 10−4 ⇒ END

ELSE ⇒ plasticity algorithm ⇒ σn
zz GOTO 3.

2.8 Implementation

σ1
n+1

σIII σI

σII

σn+1

σtrial
n+1

σk
n+1

σn

Figure 9: Cutting plane algo-
rithm

The present model has been implemented as a user-
defined material into LS-DYNA. Starting from the ad-
ditive decomposition of the strain increment at time
tn+1: ∆εn+1 =εn+1−εn, the trial stress, assuming elas-
tic behaviour, is computed as σtrial

n+1 = σn +C :∆εn+1.
Checking the yield surface f = f(σtrial

n+1, ε̄
pl) indicates

elastic (f ≤ 0) or plastic loading (f > 0). In the
case of plastic loading a classical elastic predictor plas-
tic corrector scheme is applied for stress integration.
Here the plastic strain increment can be written as
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∆ε̄
pl
n+1 = ε̄

pl
n+1 − ε̄pl

n = ∆λn+1mn+1 where ∆λ represents the sought plastic multiplier,
mn+1 = ∂g(σn+1)/∂σn+1 the direction of the plastic flow and g the plastic potential.
The increment of the equivalent plastic strain is obtained from ∆ε̄pl

n+1 =∆λn+1 ‖mn+1‖.
Hence, the stresses can be calculated through σn+1 =σtrial

n+1−∆λn+1C :mn+1 and the inter-

nal variable is updated by ε̄pl
n+1 = ε̄pl

n+∆λn+1 ‖mn+1‖. Inserting in the active yield surface
leads formally to a nonlinear equation in ∆λn+1 which is solved by the Newton-Raphson
method.
The yield condition reads:

f(p, q, ε̄pl, ˙̄εpl) = q − β(ε̄pl, ˙̄εpl)p − c(ε̄pl, ˙̄εpl) = 0 (21)

The plastic potential reads:

g =
√

q2 + αp2 (22)

Derivation of the plastic potential g for the stress state σ gives the direction of the plastic
flow:

∆ε̄pl
n+1 =∆λn+1 ‖mn+1‖ with mn+1 =∂g(σn+1)/∂σn+1 =

3

2g
s +

αp

3
δ (23)

So the update of the plastic strain tensor in rate form is:

ε̇
p =

λ̇

g

(

3

2
s +

1

3
αpδ

)

(24)

The stress update in rate form reads:

σ̇ = 2G(ε̇dev − ε̇
p

dev) + K((ε̇vol − ε̇vol)δ (25)

σ̇ = Cε − λ̇
3G

g
s − λ̇

Kβ

g
pδ (26)

Applying a classical elastic predictor–plastic corrector scheme the stress update at the
end of each time step reads:

σ = σ
trial − ∆λ

3G

gtrial
strial − ∆λ

βK

gtrial
ptrial

δ (27)

Here, the plastic multiplier ∆λ must be determined by a Newton iteration. The yield
condition must be fulfilled at the end of the time step tn+1:

fk
n+1 = qtrial + βk

n+1(ε̄
pl, ˙̄εpl)ptrial − ∆λk3Gqtrial (28)

−∆λk αKβk
n+1(ε̄

pl, ˙̄εpl)

gtrial
ptrial − ck

n+1(ε̄
pl ˙̄εpl) = 0

For the Newton iteration linearization around the current stress state at each iteration
step k is needed. Therefore tangents with respect to ∆λ and ∆̇λ for the yield surface
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coefficients are required. qn+1, pn+1 and the yield surface coefficients at time tn+1 are:

qk
n+1 = qtrial

n+1

(

1 − ∆λk 3G

gtrial

)

pk
n+1 = ptrial

(

1 − ∆λk Kα

gtrial

)

βk
n+1(ε̄

pl, ˙̄εpl) = βn(ε̄pl, ˙̄εpl) +
∂β(ε̄pl, ˙̄εpl)

∂∆λ
∆λk +

∂β(ε̄pl, ˙̄εpl)

∂∆̇λ

∆λk

∆t

ck
n+1(ε̄

pl, ˙̄εpl) = cn(ε̄pl, ˙̄εpl) +
∂c(ε̄pl, ˙̄εpl)

∂∆λ
∆λk +

∂c(ε̄pl, ˙̄εpl)

∂∆̇λ

∆λk

∆t
(29)

Inserting linearizations (29) in the yield condition (29) at the end of the time step tn+1

and derivation for ∆λ delivers the required linearization around the current stress state:

∂fn+1(∆λ)

∂∆λ
=

(∂β(ε̄pl, ˙̄εpl)

∂∆λ
+

∂β(ε̄pl, ˙̄εpl)

∂∆̇λ

)

ptrial − 3G

gtrial
qtrial (30)

−αKβ(ε̄pl, ˙̄εpl)

gtrial
ptrial − ∂c

∂∆λ
− ∂c

∂∆̇λ

1

∆t

Iteration is done, until the consistency condition is fulfilled:

fk+1
n+1 = fk

n+1 +
∂f

∂∆λ
d(∆λ)k = 0 (31)

If the consistency condition at the next time step can’t be fulfilled the increment ∆λ is
improved and a next iteration step is done:

∆λk+1 = ∆λk + d(∆λ)k = ∆λk − fk
n+1
∂f

∂∆λ

(32)

3 Results: Yield surfaces of different thermoplastics

As an example, the application of the present model due to prediction of yield for different
thermoplastics is shown. The results are published in the thesis of Vogler [13]. For a review
of methods commonly used in crash simulation, see [4], [3], [2] and the thesis of Koesters
[12]. The results obtained by PLYS are compared to the vonMises yield criterion. It
must be emphasized that this criterion is usually used in crash simulation for modelling
of thermoplastics. For a better understanding, the curves given in Figure 14 to Figure 16
are plotted in both the plane stress plane and the invariant plane, also known as p-q-plane
or Burzynski-plane. The following experimental results are taken from Bardenheier [14].
In the Figures 10, an acrylonitrile butadiene styrene (ABS) shows noticeable agreement.
In the yield surface, this results in a softening behaviour under biaxial tension. So test
data from a biaxial tensile test are regarded in addition to experimentally measured
hardening curves for uniaxial compression and tension and shear tests. With PLYS the
experimentally obtained yield locus can be approximated very well, whereas the Drucker-
Prager model is not able to fit the experimentally obtained data adequately. As can be
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Figure 10: Yield surface of acrylonitrile butadiene styrene (ABS)

seen, using compression, tension and shear only, the yield behaviour cannot be described
sufficiently. If biaxial tension is considered additionally, the yield surface is much closer to
the experimental data. As a next example for a polymer that is widely used in engineering
practice, polystyrene (PS) is regarded. For this polymeric material, more experimental
results under different loading directions are available, see Figures 10 and 11. Again,
the vonMises criterion cannot describe the challenging material response. The results
obtained by PLYS are in good agreement with the experimental findings. This identifies
the present model as an appropriate material law for polymers. Similar results can be
observed for a polycarbonate (PC). Experimental data of biaxial tension and compression
tests as well as test data of tension, compression and shear loading can be considered

Figure 11: Yield surface of polysterene (PS)
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Figure 12: Yield surface of polyvinyl chloride (PVC)

simultaneously in the material model PLYS.

To sum up, the presented formulation gives a practical yet efficent approximation for
typical yield surfaces of thermoplastics. As for the validation and verification procedure,
the material law is one-to-one comparable to the SAMP-formulation [17]. In particular,
the model is capable to fit experimental results obtained by tensile, compression, shear
and biaxial tests. Furthermore, unloading and failure (realized by the presented damage
and fade-out-procedure) is available as well as strain-rate dependence and non-isochoric
plasticity.

Figure 13: Yield surface of EP-resin CY232
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