New LS-DYNA Features for Modeling Hot Stamping

by: Art Shapiro, LSTC

MAT_244 : Ultra High Strength Steel

LSTC

MAT_244 MAT_UHS_STEEL

This material model is based on the Ph.D thesis by Paul Akerstrom (Lulea University) and implemented by Tobias Olsson (ERAB)

Input includes:

- 1. 15 constituent elements
- 2. Latent heat
- 3. Expansion coefficients
- 4. Phase hardening curves
- 5. Phase kinetic parameters
- 6. Cowper-Symonds parameters

Output includes:

- 1. Austenite phase fraction
- 2. Ferrite phase fraction
- 3. Pearlite phase fraction
- 4. Bainite phase fraction
- 5. Martensite phase fraction
- 6. Vickers hardness distribution
- 7. Yield stress distribution

MAT_244 : Ultra High Strength Steel

Phase change kinetics

austenite to ferrite

 $\left(\begin{array}{c} O \\ O \end{array} \right)$

$$\frac{dX_{f}}{dt} = \frac{\exp\left(-\frac{2J}{RT}\right)}{C_{f}} 2^{\binom{(G-1)}{2}} \left(\Delta T\right)^{3} X_{f}^{2(1-X_{f})} \left(1-X_{f}\right)^{2X_{f}} \left(1-X_{f}\right)^{2X_{f}}$$

$$C_{f} = 59.6Mn + 1.45Ni + 67.7Cr + 24.4Mo + K_{f}B$$

austenite to pearlite

$$\frac{dX_{p}}{dt} = \frac{\exp\left(-\frac{Q_{p}}{RT}\right)}{C_{p}}2^{(G-1)/2} (\Delta T)^{3} DX_{p}^{2(1-X_{p})/3} (1-X_{p})^{2X_{p}/3}$$

$$C_{p} = 1.79 + 5.42(Cr + Mo + 4MoNi) + K_{p}B$$

$$C_{p} = 1.79 + 5.42(Cr + Mo + 4MoNi) + K_{p}B$$

$$C_{p} = 1.79 + 5.42(Cr + Mo + 4MoNi) + K_{p}B$$

$$C_{p} = 1.79 + 5.42(Cr + Mo + 4MoNi) + K_{p}B$$

LSTC

Input parameters

• martensite

Q_f = activation energy

 $Q_p = activation energy$ $Q_b = activation energy$

MAT_244 : Ultra High Strength Steel

Mechanical Material Model

Since the material has 5 phases, the yield stress is represented by a mixture law

$$\sigma_{y} = x_{1}\sigma_{1}\left(\overline{\varepsilon}_{1}^{p}\right) + x_{2}\sigma_{2}\left(\overline{\varepsilon}_{2}^{p}\right) + x_{3}\sigma_{3}\left(\overline{\varepsilon}_{3}^{p}\right) + x_{4}\sigma_{4}\left(\overline{\varepsilon}_{4}^{p}\right) + x_{5}\sigma_{5}\left(\overline{\varepsilon}_{5}^{p}\right) - \begin{cases} LC1 \\ LC2 \\ LC3 \\ LC4 \end{cases}$$

Where $\sigma_i(\overline{\varepsilon_i}^p)$ is the yield stress for phase i at the effective plastic strain for that phase.

References

- 1. T. Olsson, "An LS-DYNA Material Model for Simulations of Hot Stamping Processes of Ultra High Strength Steels", ERAB, April 2009, <u>tobias.olsson@erab.se</u>
- 2. P. Akerstrom, Modeling and Simulation of Hot Stamping, Doctoral Thesis, Lulea University of Technology, Lulea, Sweden, 2006.

LSTC

LC5

Numisheet Benchmark BM03

Numisheet Benchmark BM03 section 1a

2.20 2.10 \bigcirc 2.00 1.90 BM3.01 Thickness [mm] Т BM3.02 M BM3.03 Μ BM3.04 ٠ କ o BM3.05 Experiment 1.70 Corus_DYNA **MAT_106** 1.60 **MAT_244** 1.50 1.40 0 15 30 45 60 75 90 120 135 105 150 165 180 Distance to P1 [mm]

By: Sander van der Hoorn, Corus, The Netherlands

M. Naderi, Thesis 11/2007, Dept. Ferrous Metallurgy, RWTH Aachen University, Germany

Using data set 2

CCT Diagram for 22MnB5 overlaid with LS-DYNA calculated cooling curves and Vickers hardness using MAT_UHS_STEEL

Thermostat feature adjusts the heating rate of a part to keep a remote sensor temperature at a specified set point.

proportional

integral

Thermostat controller Set point T_{set} = 40

Proportional + Integral Control The heating rate is adjusted to keep the sensor temperature at the set point.

On – Off Control can also be activated.

There are 2 methods available to model tool cooling

BULKNODE and BULKFLOW

BULK FLOW is a lumped parameter approach to model fluid flow in a pipe. The flow path is defined with a contiguous set of beam elements. The beam node points are called **BULK NODES** and have special attributes in addition to their (x,y,z) location. Each **BULKNODE** represents a homogeneous slug of fluid. Using the **BULKFLOW** keyword we define a mass flow rate for the beams. We then solve the advection-diffusion equation.

Application – die cooling

Pipe Network Analyzer

Think about the pipes in your house. The starting point is the valve on the pipe entering your house. We will call this NODE 1. Node 1 is special and has a boundary condition specified. The BC is the pressure you would read on a pressure gauge at this location. The water enters your house and passes through several pipe junctions before it exits through your garden hose. Every junction is represented by a NODE. The last node also needs a BC specified. This BC is the mass flow rate. The pipe network code will calculate the pressure at the intermediate junction nodes and the flow rate through the pipes.

Given an entering flow rate, calculate the flow in each pipe and the convection heat transfer coefficient

Pipe Network

input							output	
Pipe	N1	N2	Length [m]	Dia. [mm]	Rough [mm]	Ftg. [L _e /D]	Q [l/min]	h [W/m²C]
1	1	4	1	10	0.05		5.7	5600
2	2	5	1	20	0.05		9.7	2400
3	3	6	3	10	0.05	100	4.5	4600
4	1	2	0.2	10	0.05		14.2	11000
5	2	3	0.2	10	0.05		4.5	4600
6	4	5	0.2	10	0.05		5.7	5600
7	5	6	0.4	10	0.05		15.5	12000

New LS-DYNA Features for Modeling Hot Stamping

by: Art Shapiro, LSTC

Pipe Network

Solution algorithm

LSTC

Solve: Bernoulli equation

Subject to:

Pressure drop around each circuit =0.

Friction equation

$$H_f = f \frac{L}{D} \frac{V^2}{2g} + H_{fitting}$$

Gnielinski equation

$$h = \left(\frac{k}{D}\right) \left[\frac{(f/8)(\text{Re}-1000)\text{Pr}}{1+12.7(f/8)^{0.5}(\text{Pr}^{2/3}-1)}\right]$$

Flow at each junction = 0.

How do you determine a pipe flow friction factor

http://www.mathworks.com/matlabcentral/fx_files/7747/1/moody.png

Pipe Network

Pipe type	Roughness, e [mm]
Cast iron	0.25
Galvanized iron	0.15
Steel or wrought iron	0.046
Drawn tubing	0.0015

Fitting type	Equivalent length L _e /D
Globe valve	350
Gate valve	13
Check valve	30
90° std. elbow	30
90° long radius	20
90° street elbow	50
45° elbow	16
Tee flow through run	20
Tee flow through branch	60
Return bend	50