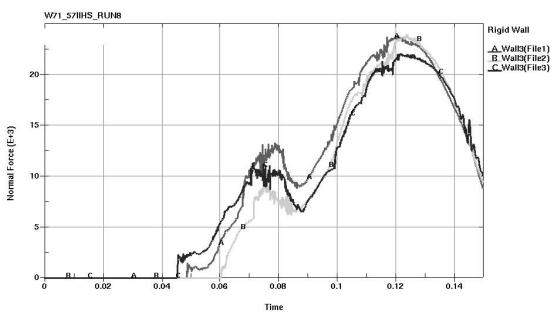
### **Recent MPP Development to Improve Consistency**


J. Wang

Livermore Software Technology Corporation

# Recent MPP Development to Improve Consistency

Jason Wang June 9, 2010

#### **Numerical Variations**



- CPU, MPI, model refinement, etc
- Change core counts

- 1. Consistency with fix number of cores
- 2. MPP HYBRID with multiple of core counts and performance
  - 1. Explicit
  - 2. Implicit
- 3. Conclusions

## Consistency Constant of cores

#### Problem:

Few MPI environments will use different algorithms to sum up data between within node and across nodes. This changing summation order will cause different numerical truncation error even using same number of MPP processors but changing from dual core to quad core system while

#### LSTC\_REDUCE

```
keyword:
    *CONTROL_MPP_IO_LSTC_REDUCE
pfile:
    general { lstc_reduce }
```

LS-DYNA will use fix order to get consistent answer

## Consistency Constant of cores

#### Problem:

MPP Decomposition is based on averaging computational cost. If model has been modified or refined. The cost profile will change and model will decompose in different way. This may change numerical results.

#### **RCBLOG**

keyword:

\*CONTROL\_MPP\_DECOMPOSITION\_RCBLOG

pfile:

decomposition { rcblog file\_rcblog}

In the first run of LS-DYNA, it will store all the cut information and also keep all other options in pfile into "file\_rcblog". In the subsequent runs, replace p=pfile to p=file\_rcblog and LS-DYNA will decompose the model base on the preserved cut lines.

#### Consistency

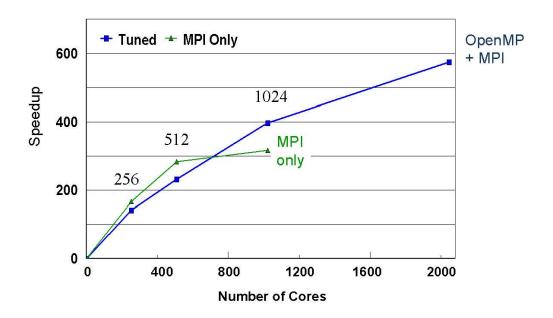
#### Problem:

Data on share nodes across domains may operate in different summation order. Changing of this order may cause bifurcation.

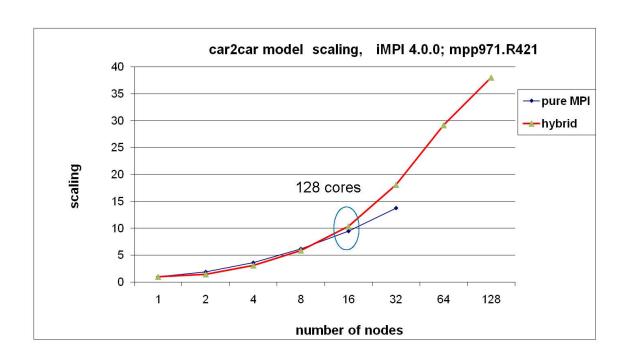
#### Solution:

Fix number of cores per job (?)

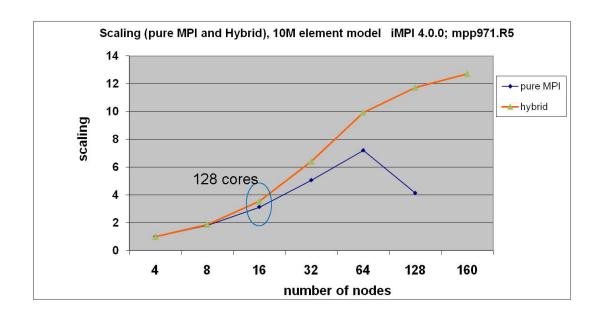
Intel: dual, quad, 6 cores, 8 cores, ....


AMD: dual, quad, 6 cores, 12 cores, ....

Core counts 


, clock rates 

, model size


## MPP Hybrid Weather Forecast Software



#### How about LS-DYNA MPP Hybrid?



#### **How about LS-DYNA MPP Hybrid?**



#### **MPP** Hybrid

There is a consistent option (ncpu=-N) in LS-DYNA SMP version. Many customers used to run their jobs with the option in SMP era, even though there is about 10-15% performance penalty with the option.

LSTC added the option into LS-DYNA Hybrid version. So customers can use the option for getting consistent numerical result. However, there is a condition here. The condition is you need to fix the number of MPI processes at first.

For example, you select 12 MPI processes, then you can run your job in this way.

mpirun –np 12 –perhost M mpp971hy i=input memory=xxxm memory2=xxm ncpu=
N p=pfile

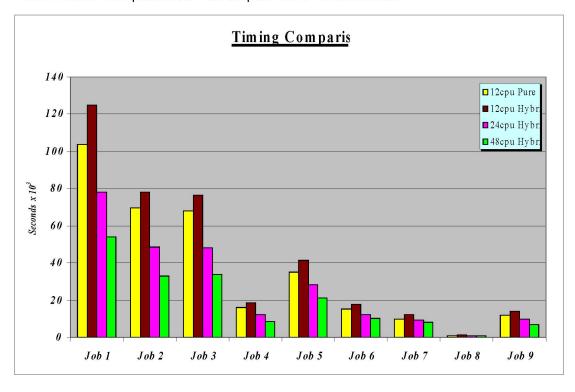
```
12 cores: 12 MPI processes x 1 OMP thread (1 nodes x 12 cores) M=12, N=1 24 cores: 12 MPI processes x 2 OMP threads (2 nodes x 12 cores) M= 6, N=2 36 cores: 12 MPI processes x 3 OMP threads (3 nodes x 12 cores) M= 4, N=3 48 cores: 12 MPI processes x 4 OMP threads (4 nodes x 12 cores) M= 3, N=4 ......

72 cores: 12 MPI processes x 6 OMP threads (6 nodes x 12 cores) M= 2, N=6
```

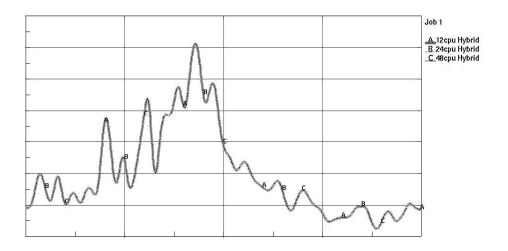
Then you can get consistent results with 12c, 24c,36c,48c, 60c, and 72c.

#### **MPP Hybrid - explicit**

Initial benchmark results with consistent option

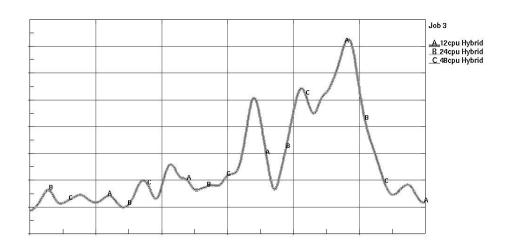

|      | 12p pure | 12x-1p  | Ratio |
|------|----------|---------|-------|
| Job1 | 108118s  | 124035s | 14.9% |
| Job2 | 75028s   | 85367s  | 13.7% |
| Job3 | 68047s   | 87924s  | 29.2% |
| Job4 | 16610s   | 22677s  | 36.5% |
| Job5 | 36522s   | 44622s  | 22.1% |
| Job6 | 14253s   | 18898s  | 32.5% |
| Job7 | 9485s    | 12753s  | 34.5% |
| Job8 | 937s     | 1260s   | 34.5% |
| Job9 | 12640s   | 16012s  | 26.7% |

Final benchmark results with consistent option (tuned)


| 12 cores | Job1   | Job2   | Job3   | Job4   | Job5   | Job6   | Job7  | Job8  | Job9  | avg  |
|----------|--------|--------|--------|--------|--------|--------|-------|-------|-------|------|
| Hybrid   | 77862s | 50983s | 48452s | 11031s | 24345s | 10450s | 6871s | 628s  | 7898s |      |
| Pure MPP | 69763s | 47172s | 43822s | 11172s | 22076s | 9734s  | 6237s | 596s  | 7002s |      |
| Ratio    | 11.6%  | 8.1%   | 10.5%  | -1.2%  | 10.3%  | 7.4%   | 10.2% | 5.37% | 12.8% | 8.4% |

### MPP Hybrid - explicit

Performance comparison between pure MPP and HYBRID

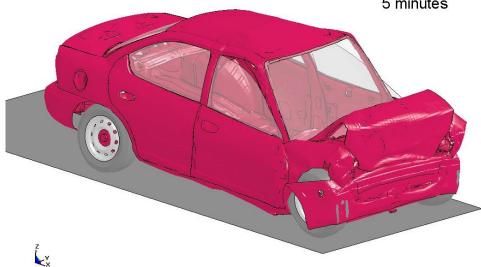



### MPP Hybrid - explicit



Job1 - vehicle deceleration response as measured at left rear sill

#### MPP Hybrid - explicit




Job3 - vehicle deceleration response as measured at left rear sill

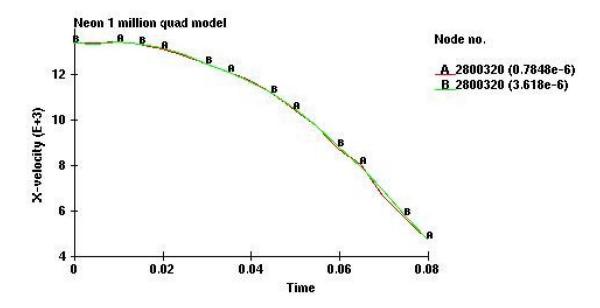
### Neon 1 million elements

Neon 1 million Element quad model

128x2x4 hybrid (1024 cores) Intel Xeon X5670 2.93GHz 5 minutes



15


## Neon 1 million elements



1056383 quad shells
130 beams
2852 solids
1 contact for the entire model
Termination time 0.080 secs
Timestep 3.618e-6 secs
Ascii and binary outputs
disabled.
Pre-decomposed with 1cpu

16

## Neon 1 million elements



17

### Neon 1 million elements

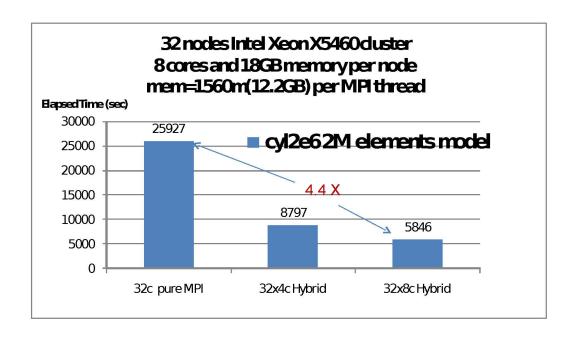
| dt=7.85e-7<br>8% mass increase<br>Conventional mass scaling             | 6 minutes 18 seconds |
|-------------------------------------------------------------------------|----------------------|
| 128x2x4<br>dt=3.618e-6                                                  | 5 minutes            |
| 894% mass increase                                                      |                      |
| Selective mass scaling                                                  |                      |
| Ongoing development to support more features for selective mass scaling |                      |

#### **MPP Hybrid - implicit**

Currently, the typical node configuration of installed crash simulation clusters includes:

- ➤ High-end or popular processors (4 to 8 cores)
- Low memory space (2-3GB per core, 8-24GB)
- Two Hard Disks for OS and /tmp

Due to poor file system, it's impossible to run LS-DYNA/Implicit jobs with out-of-core solver in installed cluster, so in-core solver must be used. However, users has to run 1 MPI process per node due to limited memory space in many cases.


LS-DYNA Hybrid version solved the problem on current installed cluster for crash analysis.

#### **MPP Hybrid - implicit**

| CYL1E6 Model<br>921K elements<br>3.27 M DOFs | Intel® Xeon® X7560 system 32 cores @ 2.26Ghz 128GB memory |                                             | Intel® Xeon® X5560 cluster<br>8 nodes with 8 cores @2.8Ghz<br>24GB memory |                                              |  |
|----------------------------------------------|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|--|
| Cores<br>nodes                               | 4 cores<br>1 node<br>Pure MPP<br>Best choice              | 32 cores<br>1 node<br>Hybrid<br>Best choice | 8 cores<br>8 nodes<br>Pure MPP<br>Best choice                             | 64 cores<br>8 nodes<br>Hybrid<br>Best choice |  |
| Memory requirement                           | 31.2GB per<br>MPI process                                 | 31.2GB per<br>MPI process                   | 15.6GB per<br>MPI process                                                 | 15.6GB per<br>MPI process                    |  |
| Elapsed Time                                 | 44013s                                                    | 7047s                                       | 18521s                                                                    | 5541s                                        |  |
| Speedup                                      | 1.00                                                      | 6.25                                        | 1.00                                                                      | 3.34*                                        |  |

\*: HT=ON

#### **MPP Hybrid - implicit**



### **Conclusions**

- Use LSTC\_REDUCE if several MPI are using
- Use RCBLOG after decided the decomposition
- Keep constant MPP proc
- Migrate to hybrid and use -ncpu to get parallel performance and get identical numerical results

## Thank you

| 9. LS-DYNA F | orum. | Bamberg | 2010 |
|--------------|-------|---------|------|
|--------------|-------|---------|------|