

LS-DYNA Applications

Development costs are spread across many industries

Automotive

Crash and safety NVH Durability

Aerospace

Bird strike Containment Crash

Manufacturing Stamping Forging

Consumer Products

Structural

Earthquake safety Concrete structures Homeland security

Drop analysis Package analysis Thermal

Weer

Weapons design Blast response Penetration Underwater Shock Analysis

3

One Code for Multiple solutions

Many Results Manufacturing, Durability, NVH, Crash

LS-TaSC V2.1

- Was LS-OPT/Topology for V1; renamed as LS-TaSC, Topology and Shape Computation, since V2.
- For the topology optimization of non-linear problems involving dynamic loads and contact conditions.
- Can be used to find a concept design for most structures analyzed using LS-DYNA.

LS-TaSC

• General capabilities

- Solid design using first-order hexahedrons, tetrahedral, and pentahedral elements
- Shell thickness design using first-order quadrilateral and triangular elements
- Global constraints
- Multiple load cases, including dynamic load case weighing

Geometry definitions

- Extrusions 🖾
- Symmetry 🛕
- Casting, one sided or two-sided 📥 🗳
- Forging 🗶
- Postprocessing
 - Design histories
 - LS-PREPOST plots of the geometry evolution and the final design

LS-TaSC

New Features in V2.1

• Forging geometry definitions

This geometry definition is set to obtain a part that can be manufactured using a forging process.

Edit Part	
Design part ID	
Mass fraction (between 0.0 and 1.0)	F
0.3 Mnimum variable fraction for deleting element	
Neighbor radius Default	
Geometry definitions	
Name Definition	
Sum Extr. Cast. Forg	
Byin Lxu. Cast Tolg	
A AR in the -	
Cancel	OK O
Geometry Definition	
Name for forging definition	
Forging 1	and the second of the
Minimum Abidenee	The second second
1	
Coordinate system Direction	Mr. Jones 211" A
Global 🔻 X Y Z	
Cancel OK	
	E .

LS-TaSC New Features in V2.1

• Dynamic load scaling

- It can happen that a single load case dominates the topology of the final design making the structure perform badly for other load cases.
- Dynamic weighing of the load cases is used to select the load case weights based on the responses of the structure as the design evolves, thereby resulting in a design that performs well for all load cases.

LS-TaSC File Script	Plot Help			
Info Ca	ses Parts Constra	ints Completion Ru	n View	
Name	Input file	Weight	Queuer	
MID	beam_LC1.k	Dynamic/1	(none)	
	beam_LC2.k	Dynamic/1	(none) Copy Delete Dynamic Weights	
	U Dynamic weight	s		
	Activate dynamic	weights:		
	0	+ 1	* NODOUT_M = (Case MID)	
	= 0	+ 1	* NODOUT_L (Case LEFT)	
			Cancel OK	

Released LSTC Dummy Models

Detailed Models
HYBRID III 5 th
HYBRID III 50th
HYBRID III 95th (scaled)
SID IIs D
EuroSID 2
EuroSID 2re
USSID
HYBRID III 6-year-old
Free Motion Headform
Pedestrian Legforms
BioRID II (ALPHA)

FAST Models						
HYBRID III 5th						
HYBRID III 50th						
HYBRID III 95 th						
SID IIs D						
HYBRID III 5th Lower Body						
HYBRID III 50th Lower Body						
HYBRID III 50th standing						

LSTC Dummy Models in Development

Model	Status
HYBRID III 3-year-old	Material Optimization
HYBRID III 95 th	Model Improvements and Material Optimization
HYBRID III 95th FAST	Model Calibration and Sled Verification
BioRID II	Model Improvements and Material Optimization
WorldSID 50 th	Model Build-up
THOR NT	Meshing
Ejection Mitigation Headform	Material Optimization
HYBRID II	Meshing

15

Planned LSTC Dummy Models

- Pedestrian Headforms
- FAST versions of EuroSID 2 and EuroSID 2re
- Q-series child dummies
- Flex PLI
- WorldSID 5th percentile female

16

Video: courtesy of M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

Current EM Status

- All EM solvers work on solid elements (hexahedral, tetrahedral, wedges) for conductors.
- Shells can be used for insulator materials.
- Available in both SMP and MPP.
- 2D axi-symmetric available.
- The EM fields as well as EM force and Joule heating can be visualized in LS-PREPOST :
 - Fringe components
 - Vector fields
 - Element histories

EM Applications

Magnetic Metal Welding

Magnetic Metal Welding in collaboration with M. Worswick and J. Imbert, University of Waterloo, Canada

Current density Fringe

EM Applications

Magnetic Levitation

 Some TEAM, Testing Electromagnetic Analysis Methods, test cases have been used to validate LS-DYNA/EM accuracy and demonstrate its features and applications

ICFD in LS-DYNA

Mesh generation and remeshing

- Automatic Volume mesher, *MESH in LS-DYNA
 - Volume mesh can be created using the automatic volume mesher, together with input surfaces and specified local mesh size inside the volume

• Error Control and Adaptive Re-Meshing

Current ICFD Status					
Coupling					
 Both explicit and Implicit coupling available 					
 Loose coupling for explicit mechanics. Less robust and less costly. Suitable for simpler couplings. e.g. aeroelasticity analysis, 					
 Strong coupling is available for implicit mechanics. More robust but more costly Fluid Level 					
Water Tank example : Moving Water Tank coming to a brutal halt, Sloshing occurring, Study of pendulum oscillations.					
PSI coupling 0.265 0.255 0.					

ICFD Validations

External Aerodynamics

Cylinder Test Cases

a) Re=40, Symmetric flow separation b) Re=100, Von Karman Vortex Street

MPP Scalability

SPH and Thermal Coupling

- Thermal coupling with SPH is implemented
- Following keywords and materials are supported

ALE and Thermal Coupling

ALE *MAT_GAS_MIXTURE coupled with shell structure using *CONSTRAINED_LAGRANGE_IN_SOLID

Energy is removed from gas and deposited to shell via heat convection The energy is used as source term for thermal analysis

Particle based Blast Loading

Real Gas Model of High Explosive Particle

- High Explosive Particles of
 *PARTICLE BLAST
 - Modeled by real gases: p(V-b)=nRT
 - The co-volume effect is included
 - Works for high pressure and high temperature
 - Pressure drops sharply during adiabat expansion
- Air Particle of *AIRBAG_PARTICLE
 - Modeled by ideal gas law: pV=nRT
 - The volume of molecules is neglected
 - Works for low pressure and moderate temperature

LS-DYNA keyword deck by LS-PrePost

4

Validation of Particle Blast w. Adiabatic Expansion

- An 8 liter box filled up with air particles, the box is expanded to 16 liter
- Ratio of heat capacities $\gamma = 1.4$
- The same procedure is repeated with high explosive particles with $b = 0.32 V_0$

DES Bond Model

Emerge into Continuum Mechanics

- All particles are linked to their neighboring particles through Bonds.
- The properties of the bonds represent the complete mechanical behavior of Solid Mechanics.
- The bonds are independent from the DES model.
- They are calculated from Bulk Modulus and Shear Modulus of materials.

DES Mechanical Behaviors

LSTC Bond Model

- Every bond is subjected to:
 - Stretching
 - Shearing
 - Bending
 - Twisting
- The breakage of a bond results in Micro-Damage which is controlled by the critical fracture energy value J_{IC}.
- · Application includes:
 - Simulation of granular media involving large deformation and solid phase change
 - Material separation and progressive failure phenomena like concrete failure, rock blasting

DES for Fracture Analysis

Pre-notched plate under tension

Coupling among various LS-DYNA modules

		ALE	SPH	DES	PGas				
	ALE								
	SPH								
	DES								
	Pgas								
\square	*ALE_COUPLING_NODAL *DEFINE_SPH_TO_SPH_COUPLING								
\bigcirc	*PARTICLE_BLAST								
) te	testing 🔵 developing								

*ALE_COUPLING_NODAL

A simple test case modeling explosion driven sand grains hitting on a plate

*DEFINE_SPH_TO_SPH_COUPLING

•Penalty based SPH to SPH particle contact •Will be extended to SPH and DES coupling

*PARTICLE_BLAST

Isogeometric analysis

Isogeometric Analysis

- Four formulations for NURBS shell elements,
 - EQ.0: shear deformable shell theory with rotational DOFs
 - EQ.1: shear deformable shell theory without rotational DOFs
 - Excellent eigenvalues for NVH.
 - Only 3 DOF per node, reducing implicit analysis cost
 - EQ.2: thin shell theory without rotational DOFs
 - EQ.3: thin shell theory with rotational DOFs
- Recent progress:
 - Elements now run in MPP with excellent scaling.
 - FORM. EQ.4: combination of FORM=0 and FORM=1
 Multi-patch analysis with thin shells by selectively adding rotational
 DOF at patch boundaries,
 - NURB based contact is under deployment Penetration happens when the distance between the slave node and the master NURBS element, D, is smaller than shell thickness

Recent progress

selectively adding rotational DOF at patch boundaries

640 Quadratic NURBS elements on Four Processors

Recent progress								
NURBS-based contact								
Old Contact New Contact	square tube buckling - s Time = 0.44 Contours of Effective areas mins123848, at sense 1000 mins123848, at sense 10000 mins123848, at sense 10000 mins123848, at sense 10000 mins123848, at sense 10000 mins123848, at sense 1000000000000000000000000000000000000	ingle surface cor	itact test		nge Levels 228-e02 538-e02 538-e02 538-e02 598-e02 598-e02 598-e03 598-e03 598-e03 598-e03 598-e04 598	Mact test		
	1x1	2x2	3x3	4x4	History of Inte	rnal Energy		

Recent progress							
		NUI	RBS-bas	ed cont	act		
Contact algorithm	Test ID	Interpolated Ele.	∆t factor	Search depth	result	Contact time	
Old	O19	1x1	0.9	2	NG	1.0	
Old	O29	2x2	0.9	2	NG	2.15	
Old	O25	2x2	0.5	2	Good	4.23	
Old	O39	3x3	0.9	2	Good	3.74	
Old	O49	3x3	0.5	2	Good	7.05	contact
New	N19	1x1	0.9	2	Good	1.70	_
New	N191	1x1	0.9	1	Good	1.35	Best new
New	N29	2x2	0.9	2	Good	4.10	contact
New	N291	2x2	0.9	1	Good	3.35	
New	N39	3x3	0.9	2	Good	6.88	
New	N391	3x3	0.9	1	Good	5.84	
New	N49	4x4	0.9	2	Good	10.5	
New	N491	4x4	0.9	1	Good	8.80	

Contact bet. IGA and FEA							
Test ID	Contact algorithm	Search depth	# of contact	result	Contact cpu time		
AO1	AUTO_1WAY_S2S, Old	2	3	NG (penetrate)	NA		
F1	FORMING_1WAY_S2S	2	3	Good	1.0		
AN1	AUTO_1WAY_S2S, New	2	3	Good	2.0		
AN2	AUTO_1WAY_S2S, New	1	3	Good	1.4		
AN3	AUTO_1WAY_S2S, New	2	1	Good	1.5		

- New contact is about twice as expensive as the old contact.
- New contact is more robust and stable than old contact. It allows lower search depth, less-frequent bucket search and larger time steps. Therefore it is possible that, in some cases, new contact costs less to get the same accuracy.

Update of **LS-DYNA FEA Tools**

Frequency Domain Analysis

Frequency Domain Analysis

- Features:
 - Random vibration
 - Random fatigue
 - Frequency response function
 - Steady state dynamics
 - Response spectrum analysis
 - BEM Acoustics
 - FEM Acoustics
- Applications:
 - Automotive: NVH, engine, fatigue
 - Aircraft: acoustic, landing gear, fatigue
 - Earthquake engineering for offshore, structures, nuclear structures,...
 - Civil engineering, Defense industries,....

Correlated excitations in random vibration for FREQUENCY_DOMAIN_RANDOM_VIBRATION

When SID and STYPE are both < 0, they give the IDs of the correlated excitations

New FDA Features • Nodal Force output for FREQUENCY_DOMAIN_FRF Card 3 Variable Type N2TYP DOF2 VAD2 Response output type: **Resultant force FRF** 0: velocity 1: acceleration 2: displacement 3: Nodal force (new) Double-sum method for modes combination of FREQUENCY DOMAIN RESPONSE SPECTRUM Card 1 1 2 3 4 5 MDMIN MDMAX FNMIN FNMAX RESTRT MCOMB: EQ.5: Double Sum method EQ.0: SRSS method, based on Gupta-Cordero EQ.1: NRC Grouping method, coefficient, EQ.2: Complete Quadratic Combination EQ.6: Double Sum method EQ.3: Double Sum method, based on modified Gupta-EQ.4: NRL-SUM method. Cordero coefficient.

TL (Transmission loss) is the difference in the sound power level between the incident wave entering and the transmitted wave exiting the muffler when the muffler termination is anechoic.

$$TL = 10 \log_{10} \frac{W_i}{W_i}$$

63

FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

• Palmgren-Miner's rule of cumulative damage ratio

$$E(D) = \sum_{i} \frac{n_{i}}{N_{i}}$$
, where

 n_i is the number of cycles at stress level S_i , and N_i is the number of cycles for failure at stress level S_i , given by material's S-N curve.

• Fatigue analysis of a simple cantilever aluminum beam subjected to base accelerations is considered.

Metal Forming

Directional and pressure sensitive friction model for metal forming

• *DEFINE_FRICTION_ORIENTATION enables definition of Coulomb frictions in any directions in the sheet plane. The friction coefficients can also be scaled based on the contact pressure.

LCID: ID of the curve defining COF vs. orientation in degree.

LCIDP: ID of the load curve defining COF scale factor
 vs. pressure.

A Contact-based Scrap Trimming Feature

- Scrap fall failure is one of the common defects in stamping plants
- Critical characteristics needed to detect scrap fall errors
 - Broken-off scraps carry the initial kinematics and dynamics from the upper moving trim steel through contact during the trim process.
 - trimming action is not simultaneous along the trim curve
 - Contact between scrap and low trim steel and post
- CONTROL_FORMING_SCRAP_FALL is developed, together with Ford Motor, as an effective analytical tools to detect potential scrap fall failures in tool/die design stages.

New Method

Old Method

A Contact-based Scrap Trimming Feature

 CONTROL_FORMING_SCRAP_FALL application to die design for a hood outer panel, by Gu etc. Ford Motor.

Formability Index Analysis for *MAT_036

- NLP option of MAT_3-PARAMETER_BARLAT allows for prediction of sheet metal failure using the Formability Index (F.I.), which accounts for the nonlinear strain path effect.
 - The F.I. information is stored in a history variable #9. Be sure to set the variable NEIPS of *DATABASE_EXTENT_BINARY to 10, and set MAXINT to NIP used in *SECTION_SHELL.
 - Necking failure starts when the F.I. across the section, viewable via history variable #9, reaches the value of 1.0.

Card 3	1	2	3	4	5	6	7	8
Variable	AOPT	C	Р	VLCID		PB	NLP/HTA	HTB

Blank Size Development

- *INTERFACE_BLANKSIZE is developed to
 - accurately obtain initial flat blank size
 - obtain trimming curve for flanging process
- For a single forming process, only the option **DEVELOPMENT** is needed, and three input files are needed
 - an initial estimated blank shape,
 - a formed blank shape, and,
 - a target blank shape.
 - The calculated/corrected initial blank shape will be output.
- For multi-stamping process involving drawing, trimming and flanging, additional options of INITIAL_TRIM and INITIAL_ADAPTIVE are needed to trace all the forming processes involved.
- Usually 1 ~ 3 iterations are needed to get the correct result

BLANKSIZE_DEVELOPMENT						
Output						
• Result after 1 st iteration						
First compensated blank Original one-step solution First compensated blank superimposed with original one-step result	Formed from first compensated blank Target Final formed blank overlaps target					

New Forming Output Control

 *CONTROL_FORMING_OUPUT provides more control on d3plot output of stamping simulations

Variable	CID	NOUT	TBEG	TEND	Y1	Y2	Y3	Y4

- CID, ID of a tooling kinematics curve, as defined by *DEFINE_CURVE and used by *BOUNDARY_PRESCRIBED_MOTION_RIGID.
- NOUT, total number of D3PLOT outputs for the tooling kinematics curve, excluding the beginning and final time.
- TBEG (TEND), Start(END) time of the curve.
- Yi, Distances to tooling home, where D3PLOT files will be output.

M125 Different kinematic hardening for for. & rev. deformation

- This material model is based on Yoshida-Uemori's theory that uses two surfaces to describe the hardening rule: a yield surface *f* with back stress α and boundary surface *F* with back stress β.
- Old model assumes that shape of the stress-strain curve of forward deformation is closely related to the one of reverse deformation.

M125

Different kinematic hardening for for. & rev. deformation

 The old model is too rough for most materials. In the new model variables SC1 and SC2 are used to describe the forward and reverse deformations of the cyclic plasticity curve, respectively, *Yoshida & Uemori, IJP 2002*

Improvement to SENSOR

Improvements to SENSOR_DEFINE

- Add SET options to *SENSOR_DEFINE_NODE and *SENSOR_DEFINE_ELEMENT
- Positive set ID requires all elements in a set to meet the switch condition to change the switch status; If set ID is negative, switch status will change if at least one of elements in the set meets the switch condition
- This example changes the switch status if every node in set-200 has velocity larger than 100.

* 9	* SENSOR_DEFINE_NODE _ <mark>SET</mark>											
\$	SNSID	NODE1	NODE2	VID	CRD	CTYPE						
	100	200		Х		VEL						
*5	ENSOR_S	WITCH										
\$	SWITID	TYPE	SENSID	LOGIC	VALUE							
	700	SENSOR	100	GT	100.							

78

Improvements to SENSOR_DEFINE

• *SENSOR_DEFINE_NODE

SENSID NODE	1 NODE2	VID		CTYPE		
-------------	---------	-----	--	-------	--	--

- Magnitude of nodal disp., vel. and acc. will be output if vector ID, VID, is "0"
- CTYPE could be defines as "TEMP" to trace nodal temperature

• *SENSOR_DEFINE_ANGLE

CENCID	N1	N2	N3	N/4		
SERSID	141	112	115	1144		

Define an angle sensor for angular measurement. This command outputs the angle between two lines, in the same plane, $0 \le \theta \le 180$

Improvements to SENSOR_DEFINE

• *SENSOR_DEFINE_ELEMENT

SENSID ETYPE ELEMID	COMP	CTYPE	LAYER	SF	N
---------------------	------	-------	-------	----	---

SF, PWR:

Optional parameters, scale factor and power, for users to adjust the resultant sensor value. The resultant sensor value is $(SF \times \text{Original} \quad \text{Sensor} \quad \text{Value})^N$

 This new feature allows user to simulate the spot-weld-type failure model when beam elements are used to model spot welds.

$$\left(\frac{|f_n|}{S_n}\right)^n + \left(\frac{|f_s|}{S_s}\right)^m \ge 1$$

Improvement to SENSOR_CONTROL

*SENSOR_CONTROL

CNTLID	TYPE	TYPEID	TIMEOFF				
--------	------	--------	---------	--	--	--	--

TYPE=FUNCTION

The status of *SENSOR_CONTROL can be referred in *DEFINE_CURVE_FUNCTION. Its value is set to "1" and "TYPEID" when its status is "on" and "off" respectively.

0	4	
0	1	

Miscellaneous Features

Efficient EFG shell for crash

Card 1	Variable	SECID	ELFORM	SHRF	NIP	PROPT		
	Туре	F	F	F	Ι	F		
	Default							

ELFORM EQ. 41: EFG shell (local projection) (recommended for crashworthiness)

Card 3	Variable	DX	DY	ISPLINE	IDILA	IEBT	IDIM
	Туре	F	F	Ι	Ι	Ι	Ι
	Default	1.01	1.01	0	0	3	1

CPU saving is about 50%~100%
Capable of dealing large deformation
Over all performance is close to original EFG shell formulation
Supports for ELFORM = 41
Available in R6.0 and after SMP and MPP

Efficient EFG shell for crash

FEM shell #16

Coupled EFG/FEM shell

Original EFG shell

Time = 0.33003 Contours of Effective Plastic Str max IP, value mim:0.00097:312, at elem# 2743 max=1.32594, at elem# 1026	Fringe Levels ain 1.326+00 1.1934+00 9.284-01 6.634-01 5.309-01 3.984-01 2.659-01 1.334-01 0.733-04	Time = 0.33002 Contours of Effect max IP value min=0.00977491, max=1.49628, at	tive Plastic Strain at elem# 2752 elem# 3249	Fringe Levels 1.436+00 1.294+00 1.516+00 1.008+00 8.657-01 2.320-01 5.804e-01 4.377e-01 2.521e-01 1.524-01 9.775e-03	me = 0.3303 phours of Effective Plastic Strain ax IP: value lin=0.00387029, at elem# 925 lax=1.49576, at elem# 195	Fringe 1.496 1.347 1.197 1.048 8.999 7.499 6.000 4.514 8.022 1.53 3.870	Levels e+00 _ e+00 _ ie+00 _ je-01 _ je-01 _ je-01 _ 2e-01 _ 1e-01 _ je-03 _
Methods	Original EFG	shell	Coupled EFC	G/FEM shell	Original EFG shell	1	
Normalized CPU	1.0		1.0	58	3.23		

*MAT_ADD_PORE_AIR

• *MAT_ADD_PORE_AIR

Card 1	1	2	3	4	5	6	7	8
Variable	MID	PA_RHO	PA_PRE	PORE				
Card 2	1	2	3	4	5	6	7	8
Variable	PERM1	PERM1	PERM3	CDARCY	CDF	LCPGD1	LCPGD2	LCPGD3

- Linear Darcy's law (CDARCY+CDF||v_{ai}|)*PORE*v_{ai}= PERM_i *∂P_a/∂x_i, i=1,2,3
- A general form of Darcy's law can be defined through

LCGDC_i:

(CDARCY+CDF|| v_a ||)*PORE* v_{ai} = PERM* f_i ($\partial P_a/\partial x_i$), i=1~3,

where f_i is the function value of LCPGD_i, v_{ai} is the pore air flow velocity along the i'th direction, $\partial P_a/\partial x_i$ is the pore air pressure gradient along the i'th direction, and $x_1=x$, $x_2=y$, $x_3=z$

CVRPER for *BOUNDARY PORE AIR PRESSURE

• Pore air analysis boundary condition card

*BOUNDARY PORE AIR PRESSURE

Card 1	1	2	3	4	5	6	7	8
Variable	SEGID	LCID	CMULT	CVMASS	BLOCK	TBIRTH	TDEATH	CVRPER

CVRPER: Permeability factor of cover material. CVRPER allows users to model the porosity properties of the cover material. If SEGID is covered by a material of very low permeability (e.g., coated fabric), it is appropriate to set CVRPER=0. In this case, P_c , the pressure calculated assuming no boundary condition, is applied to SEGID. If SEGID is not covered by any material, it is appropriate to set CVRPER=1, the default value. In this case, the applied pressure becomes P_b, the boundary pressure determined by CMULT and LCID. $0.0 \le \text{CVRPER} \le 1.0$

Low CVRPER example: leather covered seat

High CVRPER example: clothes covered seat

CVRPER for *BOUNDARY PORE AIR PRESSURE

© 2012 Copyright by DYNAmore GmbH

*BOUNDARY_PRESCRBED_MOTION_SET_BOX

- A new option of "BOX" is added to *BOUNDARY_PRESCRBED_MOTION_SET
- Extra cards
 Variable BOXID TOFFSET
 - BOXID: A box ID defining a box volume in space in which the constraint is activated. Only the nodes falling inside the box volume will be applied the prescribed motion
 - TOFFSET: Time offset flag for the SET_BOX option
 - EQ.1: the time value of the load curve, LCID, will be offset by the time when the node enters the box
 - EQ.0: no time offset is applied to LCID

Elbow Pipe Element

- Pipe networks are part of almost every industrial setup including refineries and power plants.
- Pipes are very often used to carry substances that, by virtue of their pressure, temperature, physical and chemical characteristics, can cause serious damage to health, property and the environment, if released into the atmosphere.
- Therefore FEA analysis to guarantee the integrity of pipes in industrial contexts is of paramount importance

Elbow Pipe Element

- When an external load is applied to one of its ends, a pipe bend's cross-section tends to deform significantly.
- This behavior, characteristic of pipe bends and mainly due to their curved geometry, accounts for their greater flexibility. This added flexibility is also accompanied by stresses and strains much higher than those present in a straight pipe. For this reason, pipe bends are considered the critical components of a piping system.
- A quadratic beam element has been implemented for LS-DYNA. It is based on the formulation developed by Carlos Almeida 1982.

Elbow Pipe Element

 It is a 3 node element with 36 degrees of freedom, 18 degrees of translation and rotation and 18 degrees of ovalization (each node have 6 ovalization degrees)

- Related Keywords:
 - *ELEMENT_BEAM_ELBOW
 - ELFORM, of *SECTION_BEAM, =14,
 - *INTEGRATION_BEAM, a user-defined integration rule with tubular cross section must be used
- Ovalization degreees can be printed to an ASCII file
- Both explicit and implicit implementations.

Validation of Elbow Pipe Element

 A cantilever beam, modelled as 2 beam elements, is subjected to an end moment

Future

- LSTC is not content with what has been achieved
- New features and algorithms will be continuously implemented to handle new challenges and applications
 - Electromagnetics,
 - Acoustics,
 - Compressible and incompressible fluids
 - Isogeometric and Cosserat elements, contact, and related developments
 - Discrete element methodology for modeling granular materials
 - Simulation based airbag folding and THUMS dummy positioning underway
- Multi-scale capabilities are under development
 - Implementation underway (New approach which is more user friendly)
- Hybrid MPI/OPENMP developments are showing significant advantages at high number of processors for both explicit and implicit solutions

95