Simulation des Presshärtens unter Berücksichtigung der induktiven Bauteilerwärmung

Multiphysics solver in LS-DYNA R7

Dipl.-Ing. Christian Scheffler Fraunhofer Institut für Werkzeugmaschinen und Umformtechnik 17.03.2014

Inhalt

- Kurzvorstellung Fraunhofer Institut IWU
- LS-DYNA R7 Multiphysics Solver für EM-Probleme
- Simulation der induktiven Erwärmung + IHU-Prozess in LS-DYNA R7
- Zusammenfassung

Das Fraunhofer IWU im Profil

Kompetenzfelder

Werkzeugmaschinen Mechatronik Funktionsleichtbau Spanende Technologien Umformtechnologien Füge- und Montagetechnologien Produktionsmanagement

im Verbund mit

- Technischer Universität Chemnitz
- Fraunhofer-Gesellschaft
- Maschinen-, insbesondere
 Werkzeugmaschinenbauern
- deutscher und internationaler Automobilindustrie
- Zulieferindustrie (Umformung, Zerspanung, Werkzeugbau)

Temperierte Innenhochdruckumformung

Unsere Fachkompetenz

- Weiterentwicklung der wirkmedienbasierten Umformprozesse
 - Einsparung von
 Zwischenglühoperationen und
 Vorformstufen
 - prozessintegrierte Wärmebehandlung
 - Umformung von Aluminium, Magnesium, Stahl, Titan und Kunststoff
- Werkzeug- und Prozessentwicklung
 - Sicherstellung der erforderlichen
 Temperaturgradienten f
 ür Umform- und Abk
 ühlphase im Werkzeug
- Entwicklung von Verfahrenskombinationen
 - IHU & Presshärten
 - IHU & superplastische Umformung

Werkzeugintegrierter Temperatursensor

Warmumgeformte Bauteile

© Fraunhofer IWU Dr. Drossel

4

Scheffler

Elektromagnetische Umformung - EMU

Unsere Fachkompetenz

- Analyse und Auslegung des multiphysikalischen Prozesses
- Fertigungsgerechte Bauteilgestaltung
- Auslegung von Verfahrenskombinationen und Prozessketten
 - Tiefziehen mit integrierter EMU
 - elektromagnetisches Füge mit anschließender IHU
- Auslegung von Füge- und Trennoperationen
- **Simulation** des Umform- und Fügeprozesses
 - elektromagnetisch-strukturmechanisch gekoppelte Simulation
 - vereinfachter hocheffizienter Simulationsstrategien
 - numerische Bestimmung der Verbundfestigkeit bei Fügen
- Entwicklung und Umsetzung von Werkzeugkonzepten
 - Induktoren
 - Feldformer
 - Matrizen

Stoßstromanlage für die EMU

EMU geformte Türgriffmulde

Fügeverbindungen (artgleiche und artfremde Werkstoffe)

Anwendungsgebiete der Elektromagnetischen Umformung

Fraunhofer

LS-DYNA R7 Multiphysics Solver für EM-Probleme

LS-DYNA R7

- Erweiterung auf Multiphysics-Bereich
- ICFD-Solver (Inkompressible Fluide)
- CFD-Solver (für kompressible Fluide)
- Elektromagnetischer Solver 2D axi/3D für transiente Probleme
- Anwendung für : Elektromagnetische Umformung /Schweißen/Schneiden
 → Kopplung zu mechanischen Solver

Induktive Erwärmung→ Kopplung zu thermischen Solver

LS-DYNA R7 Multiphysics Solver für EM-Probleme

Wechselwirkungen zwischen den Solvern in der gekoppelten Simulation

© Fraunhofer IWU Dr. Drossel Fraunhofer

8

Steuerung EM-Solver

*EM_CONTROL

\$ e	emsol	numls	emdtinit	emdtmax	emtinit	emtend	ncyclFem	ncyclBem
------	-------	-------	----------	---------	---------	--------	----------	----------

2 200 2.5 2.5 1.5e+1 100000 100000

emsol:

EQ.1: Wirbelstrom-Solver (transiente Rechnung), z.B. Elektromagnetische Umformung

- EQ.2: induktiver Erwärmungs-Solver (Wirbelstrom-Problem)
- EQ.3: Solver zur Lösung quasistatischer elektrischer Potentialprobleme (<u>kein</u> Wirbelstromproblem), z.B. ohmsche Erwärmung bei Gleichstrom (quasi DC)

numls: Anzahl Micro-Timesteps

emdtinit/emdtmax: Macro-Timestep

emtend: Zeit bei der EM-Solver gestoppt wird

C. Scheffler

Fraunhofer

Definition Strom/Potentialrandbedingungen

*EM_CIRCUIT

\$# circid circtyp lcid r/f l/a c/t0 v0
2 11 170000 930 0
\$ sidCurr sidVin sidVout partId
103

circtype=Randbedingungstyp Strom/Spannung:

EQ.11: Definition eines eingeprägter Stromes mit Amplitude und Frequenz im segment set sidCurr

r/f=Frequenz eingeprägter Strom

l/a=Stromamplitude eingeprägter Strom

sidCurr=segment set durch das eingeprägter Strom fließt (Querschnitt Induktor)

Berechnung zulässiger Zeitschritt EM-Solver

*EM_CONTROL_TIMESTEP

\$# tstype dtconst lcid factor 3 1.0

tstype EQ.3: Berechnung zulässiger timesteps dt_{max} für EM-Solver über An-Rechnung für *EM_CONTROL emsol=1

 \rightarrow Setzen der Anzahl Micro-Timesteps NUMLS des induktiven Solvers: NUMLS > t_{macro}/dt_{max}

Einige weitere EM-spezifische Keywords

*EM_BOUNDARY \$# ssid btype 110 9

btype:

EQ.9: entfernt Oberflächensegmente aus BEM (\rightarrow mag. Vektorpotential A=0)

*EM_EOS_PERMEABILITY \$# eosid eostype lcid 1 2 22

eostype:

EQ.2: definiert Permeabilität durch B-H-Kurve (nichtlineares magnetisches Materialverhalten, aber keine Hysterese!)

Entwicklerstadium!

C. Scheffler

Simulation - Zeitschrittweite

Maximale Zeitschrittgröße

- LS-DYNA benutzt impliziten Solver f
 ür Zeitintegration der EM-Gleichungen \rightarrow kein Stabilitätskriterium im Sinne der expliziten CFL-Bedingung vorhanden
- Transiente Lösung der nichtlinearen PDE's fordert aber:

 \rightarrow letztere Bedingung meist maßgebend

a) Einhaltung eines Grenzwertes für die Genauigkeit der zeitlichen Lösung, \rightarrow Stabilität bedeutet nicht gleichzeitig Genauigkeit!

Einhaltung maximale Zeitschrittgröße, z.B. um die transiente Lösung für eingeprägte sinusförmige Ströme korrekt zu erhalten (Richtwert: mind. 20 Zeitschritte pro 1/f)

b) je nach Typ der implizit zu lösenden nichtlinearen PDE gibt es aber Konvergenzkriterien, hier für die Elektromagnetische Diffusions-Gleichung

$$\Delta t \leq \frac{1}{2} \mu \sigma l_e^2$$

mit $\mu = \mu_0 \mu_r$ Permeabilität le minimale Element-Kantenlänge σ elektr. Leitfähigkeit

Problem in unterschiedlichen Zeiträumen, Lösung transientes Wirbelstromproblem beschränkt auf kurze Zeiträume (µs), induktive Erwärmung aber in Größenordnung Sekunden (s)!

© Fraunhofer IWU Dr. Drossel

Scheffler

Arbeitsweise inductive heating solver

Lösung

© Fraunhofer IWU Dr. Drossel

Scheffler

Induktive Erwärmung in der Prozesskette Presshärten

Prozess

- partielle Erwärmung des Bauteils \rightarrow Tailored Tempering-Prozess
- erwärmter Bauteilbereich \rightarrow hohen Abkühlgeschwindigkeit, martensitisches Gefüge
- nicht erwärmter Bereich je nach Prozessführung, ein ferritisch-perlitisches oder ferritischbainitisches Gefüge
- Einstellen anforderungsgerechter mechanischer Eigenschaften im Werkstoff bzw. Bauteil gezielt und lokal begrenzt, z.B. hohe Festigkeit oder hohe Bruchdehnung, z.B. zur Aufnahme von Deformationen, \rightarrow graduierte Festigkeit

Bauteil Radiusdemonstrator

- Demonstrator für Ausformungsverhalten unterschiedlicher Radien an presshärtbaren Teilen
- Material LH800/22MnB5

Scheffler

Induktive Erwärmung Anlagentechnik

Induktor

- Eldec SDF Generator 25kW+25kW Leistung
- 2 unterschiedliche Stromfrequenzen am Leistungsausgang,
 - Hochfrequenz-Bereich (HF) ca. 150-350kHz
 - Mittelfrequenz-Bereich (MF) ca. 10-25kHz je nach Induktivität des Systems Werkstück+Induktor
- Ströme sind weitestgehend sinusförmig
- Amplituden zwischen 300-2000A für HF 200-5000A für MF je nach Induktivität Werkstück+Induktor

Induktive Erwärmung - Anlagentechnik

Strommessung

HF 170kHz

- Bestimmung des eingeprägten Stromes für Simulation
 Abgleich zu Aussagen von Induktorhersteller (Welcher Strom bei welcher Induktivität?)
- Messung mit Rogowski-Spule um hochfrequente Schwingungen zu erfassen

HF 170kHz + MF 10kHz

C. Scheffler

Fragestellungen im Bereich induktive Erwärmung

Erwärmungscharakteristik

- Temperaturfeldverteilung in Bauteil: Eindringung Temperatur, Temp.-verteilung außerhalb der Induktorspule, etc.
- Entwicklung des Temperaturfeldes über der Zeit unter Betrachtung unterschiedlicher RB's in der Simulation

Entwicklung Induktoren

- Ermittlung charakteristischer Parameter, z.B. Induktivität, Ohmscher Widerstand für konstruiert Induktor-Varianten
 - → Beschränkungen für Induktivität des Systems Werkstück+Induktor in den meisten Induktorsysteme, hier z.B. L=0.05...1.0µH
- Auswirkungen bei Integration der Induktoren in Werkzeuge

Modellaufbau

Modellaufbau

C. Scheffler

Modellaufbau – Kennwerte

Temperaturabhängige Fließkurven sind Standard (*MAT_ELASTIC_VISCOPLASTIC_THERMAL)

 \rightarrow hier Möglichkeit der Phasenmodellierung mit *MAT_244

Elektrische Leitfähigkeit als Funktion der Temperatur $\sigma = \sigma$ (T) *EM_EOS_TABULATED1

Modellaufbau – Kennwerte

Temperaturabhängige spez. Wärmekapazität cp

Temperaturabhängige Wärmeleitfähigkeit k

C. Scheffler

Modellaufbau – Kennwerte

Kontakt-Wärmeübergangskoeffizient h_c ist druckabhängig definiert

Modellaufbau – Randbedingungen thermisch, mechanisch

Wärmeübergangskoeffizienten freie, erzwungene Konvektion?

- \rightarrow aus CFD berechnen (conjungate heat transfer problem mit ICFD Solver LS-DYNA R7), heat transfer coefficients aus Temperaturgradient berechenbar
- \rightarrow VDI Wärmeatlas

gewählt für freie Konvektion: $\alpha = 7.0$

gewählt für erzwungene Konvektion: $\alpha = 17.8$ (Bewegung ca. 0.5m/s)

Segment set von Aussenseite Rohr

© Fraunhofer IWU Dr. Drossel

24

Modellaufbau – Randbedingungen thermisch, mechanisch

- Segment set von Aussenseite Rohr

© Fraunhofer IWU Dr. Drossel

Scheffler

Modellaufbau – Randbedingungen EM

Modellaufbau - Vernetzungseigenschaften

Was ist bei Vernetzung zu beachten?

- Spacing f
 ür Vernetzung des Bauteils zur besseren Abbildung Eindringtiefe des Feldes
 - → Vorab-Abschätzung der erwarteten Feldverteilung, mind. 1 Element pro Eindringtiefe, besser 2-3 Elemente
- Prismen und Tetraeder vermeiden
 - → Berechnung von Feldgrößen teilweise nicht korrekt)

Charakteristische Größen EM-Berechnung

Eindringtiefe

- bei Eindringtiefe δ Feldabfall auf ~37%, aber aufgrund j²-Zusammenhang im ohmschen Quellterm $j^2/\sigma\rho$ Absinken der Wirbelstromverluste in dieser Tiefe auf ~14%
- Eindringtiefe verschiedener Werkstoffe gibt Richtwert für Netzgröße

$$\delta = \sqrt{\frac{1}{\pi f \mu_0 \mu_r \sigma}}$$

	10kHz	170kHz	170kHz
E-Kupfer	0.66 mm	0.16 mm	-
Aluminiumleg. AA6016	1.0 mm	0.26 mm	-
Stahl DC04	1.9 mm (µ _r =1.0)	0.46 mm (µ _r =1.0)	0.2 mm (μ _r ~50)
Stahl 22MnB5/LH800 (25°C)	2.5 mm (µ _r =1.0)	0.61 mm (µ _r =1.0)	0.35 mm (µ _r ~25)
Stahl 22MnB5/LH800 (800°C)	5.0 mm (µ _r =1.0)	1.22 mm (µ _r =1.0)	1.22 mm (µ _r =1.0!)

© Fraunhofer IWU Dr. Drossel

28

Charakteristische Größen EM-Berechnung

Vernetzungseinfluss

Fehlberechnung des ohmschen Quellterms $\frac{j^2}{\sigma \rho}$

durch lineare Approximation von Feldgrößen im Element (FEM-Edge-Formulierung für H-Feld in Leiter)

→ Wert des Volumenintegrals=Wärmeproduktion pro Volumen wird nicht korrekt berechnet!

$$p_{\Omega} = \int_{\Omega} \frac{1}{\sigma} \|j\|^2 d\Omega$$

■ Fehlberechnung der Stromdichte bei zu großen Elementen
 → großer Gradient nicht abbildbar

C. Scheffler

Ergebnisse

Stromdichte j_{sum} über die Wandstärke

C. Scheffler

Fraunhofer

Ergebnisse - Feldverteilung

Feldlinien mag. Vektorpotential (ANSYS)

C. Scheffler

Ergebnisse

© Fraunhofer IWU Dr. Drossel

C. Scheffler

Ergebnisse

Equivalent Plastic strain [-]

Radienausformbarkeit bei vorhandenem Temperaturfeld und Innendruck okay.

C. Scheffler

Ergebnisse – Darstellung LS-Prepost

- Darstellung von magnetischen, elektrischen Feldgrößen in LS-Prepost als fringe plot oder Vektordarstellung
 - Stromdichte
 - elektr Feldstärke
 - magnetische Flussdichte
 - Lorentzkraft
 - mag. Vektorpotential
 - \rightarrow für induktive Erwärmung
 - Elektrische Leitfähigkeit
 - Ohmscher Wärmequellterm
- angezeigte Feld-Werte f
 ür den inductive heating solver (EMSOL=2) sind spezieller Mittelwert über alle Micro-Time-Steps NUMLS z.B. für die Stromdichte

$$i = \sqrt{\frac{1}{NUMLS} \cdot \sum_{n=1}^{NUMLS} \|j_n\|^2}$$

skalare Größen

 \rightarrow physikalische Bedeutung begrenzt

Ergebnisse – Messung Temperatur-Zeit-Verlauf

Messung Erwärmung, Abkühlung an ausgewählten Punkten des Demonstrators
 Abgleich zur Simulation

Erwärmungsmessung mit Thermoelement kontinuierlich Abkühlungsmessung durch Handpyrometer zu wenigen Zeitpunkten

Ergebnisse – Temperatur-Zeit-Verlauf

Temperatur-Zeitverlauf an ausgewählten Punkten

© Fraunhofer IWU Dr. Drossel

Scheffler

Ergebnisse – Globale Ergebnisparameter

Induktivität Gesamtsystem Werkstück + Induktor aus circuit3D_xxx file entnehmbar für *EM_CIRCUIT circtype=1,2 oder 3 Rechnung

				\frown		\frown			
time	voltage	charge	current	resistanceD	resistance	J inductance	mutual 1	mutual 2	
0.0000E+00	0.2000E+04	0.6600E+00	0.6970E+02	0.1471E-02	0 0000E+00	0.4583E-06	0.0000E+00	0.0000E+00	0.0000E+00
0.2000E-07	0.2000E+04	0.6600E+00	0.1394E+03	0.1471E-02	0.0000E+00	0.4583E-06	0.0000E+00	0.0000E+00	0.0000E+00
0.4000E-07	0.1999E+04	0.6600E+00	0.2090E+03	0.1471E-02	0.0000E+00	0.4583E-06	0.0000E+00	0.0000E+00	0.0000E+00
				\checkmark					

Ergebnis: Induktivität 458nH → Induktor für Anlage geeignet.

Induktivität ist abhängig von verschiedenen Faktoren (z.B. Abmessungen Induktor, Abmessungen Werkstück, spez. Leitfähigkeit, Frequenz...), deshalb Rechnung für genaue Werte der 3D-Geometrie notwendig.

C. Scheffler

Berücksichtigung weiterer Effekte

Berücksichtigung Hysterese-, Ummagnetisierungsverluste

Hysteresekurven f
ür den Frequenzbereich der induktiven Erwärmung notwendig

 oft signifikante Unterscheidung von statischen Hysteresekurven

C. Scheffler

Berücksichtigung weiterer Effekte

Ummagnetisierungsverluste pro Umlauf und Volumeneinheit

$$w_{hys} = \int_{-\infty}^{\infty} (B_2(H) - B_1(H)) dH$$
 [J/m³]

für die Verluste bei der Frequenz fergibt sich die Wärmequelldichte

$$q_{hyst} = w_{hyst} \cdot f \qquad [W/m^3]$$

Erfassbar in LS-DYNA durch Wärmequellterm mit Keyword

© Fraunhofer IWU Dr. Drossel

Scheffler

Einschränkungen EM-Solver LS-DYNA

- Topologie-Probleme BEM bei speziellen Geometrien, z.B. Rohr ändert sich zu Vollkörper
 Aufschneiden der Geometrie oder alternativ
 Innensegmente exkludieren
 - mit *EM_BOUNDARY

Problem eingeprägter Strom mit mehreren überlagerten Frequenzen

→ mehrfache Definition *EM_CIRCUIT mit unterschiedlichen Frequenzen momentan nicht möglich

C. Scheffler

Einheiten

Empfehlung für Einheitensystem bei gekoppelten Elektromagnetisch-Thermisch-Mechanischen Rechnungen: → SI-Einheiten (m, kg, s, K)

	USI	Equivalent kg*m*s			ex 1	ex 2		
Masse	kg	kg	m	S	g	g		
Länge	m		5		mm	mm		
Zeit	S				S	ms		
Energie	J	1	2	-2	1.e-9 J	1.e-3 J		
Kraft	Ν	1	1	-2	1.e-6 N	Ν		
Spannung	Pa	1	-1	-2	Ра	1.e6 Pa		
Dichte	kg/m3	1	-3	0	1.e6 kg/m3	1.e6 kg/m3		
Wärmekapazität	J/kg/K	0	2	-2	1.e-6 J/kg/K	J/kg/K		
Thermische Leitfähigkeit	J/m/s	1	1	-3	1.e-6 J/m/s	1.e3 J/m/s		
Strom	А	0.5	0.5	-1	1.e-3 A	А		
Widerstand	Ω	0	1	-1	1.e-3 Ω	Ω		
Induktivität	Н	0	1	0	1.e-3 H	1.e-3 H		
Kapazität	F	0	-1	1	1.e3 F	F		
Spannung	V	0.5	1.5	-2	1.e-6 V	V		
B-Feld	Т	0.5	-0.5	-1	Т	1.e3 T		
Elektrische Leitfähigkeit	$\Omega^{-1}m^{-1}$	0	-2	1	1.e6 Ω ⁻¹ m ⁻¹	1.e3 Ω ⁻¹ m ⁻¹		

Ende Präsentation

Ende Präsentation