Using LS-DYNA for Simulation of Welding and Heat Treatment

Dr.-Ing. Thomas Klöppel
DYNAmore GmbH
Motivation – Process chain

- For modern processes and materials, the mechanical properties of the finished part highly depend on the fabrication chain.

- Numerical simulations of the complete process chain necessary to predict finished geometry and properties.

- Welding stages particularly important:
 - Locally very high temperature gradients
 - Large distortions
 - Changes in the microstructure of the material in the heat affected zone

- Compensation for springback and shape deflections.
Motivation - Example

1 Deep drawing
2 Clamping
3 Welding
4 Springback

alignment points
Motivation - Example

5 Deep drawing

6 Clamping

7 Welding hollow seams

8 Welding flanged seams

9 Springback (left) vs. measurement (right)
Motivation - Conclusions

- Need a powerful multi-physics solver to simulate the welding process

- As stand-alone process welding is most often simulated with solid discretizations

- In automotive industries, welding is only one stage in the process chain
 - Seamless transition of data from one stage to the next
 - Typically, forming and spring-back analyses are done using shell discretizations

- All new developments are to be done for solid and shells!
Necessary developments

- Realistic description of the heat source applied to the weld seam
 - For curved and deforming structures (thermal expansion during welding)
 - For different processes and different discretizations (particularly shell discretizations)

- Material formulation with microstructure evolution
 - Phase changes due to heating and cooling alter mechanical and thermal properties
 - Transformations induced strains and plasticity
 - Strain rate and temperature dependent plasticity
 - Valid description for a wide range of steel and aluminium alloys

- Special contact capabilities
 - Material fusion due to heating
 - Thermal contact at T-joints for shells
CONTENT

■ Motivation

■ *BOUNDARY_THERMAL_WELD_TRAJECTORY

■ *MAT_GENERALIZED_PHASECHANGE / *MAT_254

■ New contact options in LS-DYNA

■ Remarks on Simulation Strategies
BOUNDARY_THERMAL_WELD

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 1</td>
<td>PID</td>
<td>PTYP</td>
<td>NID</td>
<td>NFLAG</td>
<td>X0</td>
<td>Y0</td>
<td>Z0</td>
</tr>
<tr>
<td>Card 2</td>
<td>a</td>
<td>b</td>
<td>cf</td>
<td>cr</td>
<td>LCID</td>
<td>Q</td>
<td>Ff</td>
</tr>
<tr>
<td>Opt.</td>
<td>Tx</td>
<td>Ty</td>
<td>Tz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Defines a Goldak type heat source
- Weld source motion possible, follows motion of node NID
- Only applicable to solid parts
Modelling a moving heat source

- Useful keyword: *CONTACT_GUIDED_CABLE

<table>
<thead>
<tr>
<th>Card 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSID</td>
<td>PID</td>
<td>CMULT</td>
<td>WBLCID</td>
<td>CBLCID</td>
<td>TBLCID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- It forces beams in PID onto the trajectory defined by nodes in NSID

- Possible solution
 - Select a trajectory on the weld seam
 - Define contact between this trajectory and a beam B1 (N1 and N2)
 - Define a second trajectory and a beam B2 (N3 and N4) following it in a prescribed manner
 - Welding torch aiming directions from N3 to N1 (*BOUNDARY_THERMAL_WELD)
 - Define local coordinate system N1,N2,N3
 - Use *BOUNDARY_PRESCRIBED_MOTION_RIGID_LOCAL to move heat source
Movement of the heat source - example

LS-DYNA keyword deck by LS-PrePost
Movement of the heat source - example

DynaWeld
Time = 28.349
Contours of Temperature, middle
min=293, at node# 99000011
max=3144.52, at node# 9751
BOUNDARY_THERMAL_WELD - Summary

- Only Goldak-type equivalent heat source available

- Weld source motion possible, follows motion of node NID
 - Structure solver necessary
 - Weld path definition not straight-forward for curve geometries
 - Compensation for part deformation requires complex pre-processing

- The incremental heating leads to element distortion when the used timestep is too large.

- No heat entry to shell elements

Need a more flexible and easier to use boundary condition for welding!
A new heat source - approach

- Move the heat source motion to a new keyword.

- The heat source follows a node path (*SET_NODE) with a prescribed velocity
 - No need to include the mechanical solver
 - In case of coupled simulations the weld path is continuously updated

- Automatically compute weld aiming direction based on surface normal

- Provide a list of pre-defined equivalent heat sources

- Use “sub-timestep” for integration of heat source for smooth temperature fields

- Implementation for solid and thermal thick shells
Interlude – thermal thick shell in LS-DYNA

- LS-DYNA features a twelve node thermal thick shell element formulation
 - Bi-linear shape functions in-plane
 - Quadratic approximation in thickness direction

- User only specifies the standard four node shell element
 - LS-DYNA automatically generates top and bottom virtual nodes, using right hand rule
 - Activated with TSHELL=1 on *CONTROL_SHELL

- Top/bottom surfaces can be addressed in thermal boundary conditions

- Different temperature values at different locations transferred to the mechanical solver
BOUNDARY_THERMAL_WELD_TRAJECTORY

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 1</td>
<td>PID</td>
<td>PTYP</td>
<td>NSID1</td>
<td>VEL1</td>
<td>SID2</td>
<td>VEL2</td>
<td>NCYC</td>
</tr>
<tr>
<td>Card 2</td>
<td>IFORM</td>
<td>LCID</td>
<td>Q</td>
<td>LCROT</td>
<td>LCMOV</td>
<td>LCLAT</td>
<td>DISC</td>
</tr>
<tr>
<td>Card 3</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td>P7</td>
</tr>
<tr>
<td>Opt.</td>
<td>Tx</td>
<td>Ty</td>
<td>Tz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **NSID1**: Node set ID defining the trajectory
- **VEL1**: Velocity of weld source on trajectory
 - LT.0: |VEL1| is load curve ID for velocity vs. time
- **SID2**: Second set ID for weld beam direction
 - GT.0: S2ID is node set ID, beam is aimed from these reference nodes to trajectory
 - EQ.0: beam aiming direction is (Tx, Ty, Tz)
 - LT.0: SID2 is segment set ID, weld source is orthogonal to the segments
- **VEL2**: Velocity of reference point for SID2.GT.0

Information Day Welding and Heat Treatment, T. Kloeppe
Aachen, Sept. 27th 2016
Example: Trajectory definition
BOUNDARY_THERMAL_WELD_TRAJECTORY

<table>
<thead>
<tr>
<th>Card 1</th>
<th>PID</th>
<th>PTYP</th>
<th>NSID1</th>
<th>VEL1</th>
<th>SID2</th>
<th>VEL2</th>
<th>NCYC</th>
<th>RELVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **NCYC:** number of sub-cycling steps

temperature field, NCYC = 1

temperature field, NCYC = 10

Information Day Welding and Heat Treatment, T. Kloeppel
Aachen, Sept. 27th 2016
BOUNDARY_THERMAL_WELD_TRAJECTORY

<table>
<thead>
<tr>
<th>Card 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>PTYP</td>
<td>NSID1</td>
<td>VEL1</td>
<td>SID2</td>
<td>VEL2</td>
<td>NCYC</td>
<td>RELVEL</td>
<td></td>
</tr>
</tbody>
</table>

- **RELVEL:** Use relative or absolute velocities in coupled simulations

RELVEL=1

Increasing rotational speed
BOUNDARY_THERMAL_WELD_TRAJECTORY

<table>
<thead>
<tr>
<th>Card 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PID</td>
<td>2</td>
<td>PTYP</td>
<td>3</td>
<td>NSID1</td>
<td>4</td>
<td>VEL1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>SID2</td>
<td>7</td>
<td>VEL2</td>
<td>8</td>
<td>NCYC</td>
<td>RELVEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELVEL: Use relative or absolute velocities in coupled simulations

RELVEL=0

Increasing rotational speed
BOUNDARY_THERMAL_WELD_TRAJECTORY

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 2</td>
<td>IFORM</td>
<td>LCID</td>
<td>Q</td>
<td>LCROT</td>
<td>LCMOV</td>
<td>LCLAT</td>
<td>DISC</td>
<td></td>
</tr>
<tr>
<td>Card 3</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td>P7</td>
<td>P8</td>
</tr>
</tbody>
</table>

- **IFORM:** Geometry for energy rate density distribution
 - EQ.1. Goldak-type heat source
 (double ellipsoidal heat source with Gaussian density distribution)
 - EQ.2. double ellipsoidal heat source with constant density
 - EQ.3. double conical heat source with constant density
 - EQ.4. conical heat source

- **Pₓ:** Parameters for weld pool geometry
For IFORM=1 (Goldak)

- P1: a
- P2: b
- P3: c_f
- P4: c_r
- P5: F_f
- P6: F_r
- P7: n

\[
q = \frac{2n\sqrt{nFQ}}{\pi\sqrt{\pi abc}} \exp\left(-\frac{n x^2}{a^2}\right) \exp\left(-\frac{n y^2}{b^2}\right) \exp\left(-\frac{n z^2}{c^2}\right)
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card 2</td>
<td>IFORM</td>
<td>LCID</td>
<td>Q</td>
<td>LCROT</td>
<td>LCMOV</td>
<td>LCLAT</td>
<td>DISC</td>
<td></td>
</tr>
<tr>
<td>Card 3</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td>P7</td>
<td>P8</td>
</tr>
</tbody>
</table>
For IFORM=2 (double ellipsoid)

- P1: a
- P2: b
- P3: c_f
- P4: c_r
- P5: F_f
- P6: F_r

$$q = \frac{3FQ}{2\pi abc}$$
For IFORM=3 (double conus)

- P1: r_1
- P2: r_2
- P3: r_3
- P4: b_1
- P5: b_2
- P6: F_1
- P7: F_2

\[q = \frac{3FQ}{2\pi b(R^2 + r^2 + Rr)} \]
For IFORM=4 (frustrum)

- P1: \(r_1 \)
- P2: \(r_2 \)
- P3: \(b_1 \)

\[
q = \frac{3Q}{\pi b(R^2 + r^2 + Rr)}
\]
*BOUNDARY_THERMAL_WELD_TRAJECTORY

IFORM=1

IFORM=2

IFORM=3

IFORM=4
BOUNDARY_THERMAL_WELD_TRAJECTORY

<table>
<thead>
<tr>
<th>Card 2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IFORM</td>
<td>LCID</td>
<td>Q</td>
<td>LCROT</td>
<td>LCMOV</td>
<td>LCLAT</td>
<td>DISC</td>
<td></td>
</tr>
</tbody>
</table>

- **LCID**: Load curve ID for weld energy input rate vs. time
- **EQ.0**: use constant multiplier value Q
- **Q**: Curve multiplier for weld energy input
- **LT.0**: use multiplier value $|Q|$ and accurate integration of heat
- **DISC**: Resolution for accurate integration. Edge length for cubic integration cells
- Default: $0.05 \times (\text{weld source depth})$
LCROT: load curve defining the rotation (α in degree) of weld source around the trajectory as function of time.

LCMOV: load curve for offset of weld source in depth (t') after rotation as function of time

LCLAT: load curve for lateral offset (s') after rotation as function of time

Card 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFORM</td>
<td>LCID</td>
<td>Q</td>
<td>LCROT</td>
<td>LCMOV</td>
<td>LCLAT</td>
<td>DISC</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbf{r} = \mathbf{r}'$

α

\mathbf{s}'

\mathbf{t}

\mathbf{t}'

\mathbf{r}

welding torch

velocity

trajectory
*BOUNDARY_THERMAL_WELD_TRAJECTORY

Example: Influence of oscillations for...

...LCROT

...LCMOV

... LCLAT
Example 1

- New Keyword is applicable to thermal thick shells / mixed discretizations
- Three-dimensional curved T-Joint, thermal-only analysis

![Solids](image)
![Solids and shells](image)
![BC on all solids](image)
![BC on solids only](image)
![BC on solids and shells](image)
Industrial examples

- Forming and clamping usually done with shell structures
- Additional filler discretized with solids

- Very smooth temperature distribution across discretization boundaries
Industrial examples

- Welding simulation can be used to investigate optimal welding strategy
 - Different welding orders one weld seam at a time
 - Simultaneous welding of multiple weld seams
CONTENT

- Motivation

- *BOUNDARY_THERMAL_WELD_TRAJECTORY

- *MAT_GENERALIZED_PHASECHANGE / *MAT_254

- New contact options in LS-DYNA

- Remarks on Simulation Strategies
Material tailored for hot stamping / press hardening processes
- Phase transition of austenite into ferrite, pearlite, bainite and martensite for cooling
- Strain rate dependent thermo-elasto-plastic properties defined for individual phases
- Transformation induced plasticity algorithm
- Re-austenitization during heating
- User input for microstructure computations is chemical composition alone

Added:
- Transformation induced strains
- Welding functionality
- Different transformation start temperatures for heating and for cooling

*MAT_244 is only valid for a narrow range of steel alloys!
Heuristic formulas connecting chemistry with mechanics fail otherwise!
Example

- A gear is heated, quenched, welded to a joint

Temperature field

Martensite concentration
*MAT_254

- Started the implementation of *MAT_GENERALIZE_PHASE_CHANGE

- **Features**
 - Up to 24 individual phases
 - User can choose from generic phase change mechanisms (Leblond, JMAK, Koistinen-Marburger,…) for each possible phase change
 - Material will incorporate all features of *MAT_244
 - Phase change parameters are given in tables and are not computed by chemical composition

- Will be suitable for a wider range of steel alloys and aluminum alloys

- Parameter of the material might come from a material database or a microstructure calculation
Special welding card not needed. Liquid filler can be accounted for by an additional phase

Damage and failure modelling, latent heat, grain growth modelling yet to be implemented
MAT_254 / **MAT_GENERALIZED_PHASE_CHANGE**

<table>
<thead>
<tr>
<th>Card 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MID</td>
<td>RHO</td>
<td>N</td>
<td>E</td>
<td>PR</td>
<td>MIX</td>
<td>MIXR</td>
<td>BETA</td>
<td></td>
</tr>
</tbody>
</table>

- **N:** Number of phases in microstructure
- **E:** Young’s modulus
 - LT.0: |E| is load curve ID/table ID for E vs. temperature (vs. phase)
- **PR:** Poissons’s ratio
 - LT.0: |E| is load curve ID/table ID for PR vs. temperature (vs. phase)
- **MIX:** Load curve ID for initial phase concentrations
- **MIXR:** LC / TAB ID for mixing rule (temperature dependent)
TASTART: Reset of history variables start temperature

TAEND: Reset of history variables end temperature

TABCTE: coefficient of thermal expansion (CTE)
- LT.0: |TABCTE| is load curve ID/table ID for CTE vs. temperature (vs. phase)

DTEMP: Maximum temperature variation within a time step
- If temperature increase exceeds DTEMP, sub time steps locally on integration point level are used
- Important for rapid heating and cooling scenarios to resolve non-linearities

Card 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASTART</td>
<td>TAEND</td>
<td>TABCTE</td>
<td></td>
<td></td>
<td>DTEMP</td>
<td>TIME</td>
<td></td>
</tr>
</tbody>
</table>
Effect of DTEMP

- Rapid heating and cooling of a single element
- Non-linear strains as transformation induced strains and the coefficient of thermal expansion depend on the temperature

Results for small time steps can be reproduced if DTEMP is sufficiently small
PTLAW: Table ID containing phase transformation laws

- If law ID.GT.0: used for cooling
- If law ID.LT.0: used for heating
- \(|LAW\ ID|:
 - EQ.1: Koistinen-Marburger
 - EQ.2: JMAK
 - EQ.3: Kirkaldy (only cooling)
 - EQ.4: Oddy (only heating)

PTSTR: Table ID containing start temperatures

PTEND: Table ID containing end temperature

PTXi: \(i\)-th scalar parameter (2D table input)

PTTTabi: \(i\)-th temperature dependent parameter (3D table input)
Koistinen Marburger

Evolution equation:

\[x_b = x_a \left(1.0 - e^{-\alpha (T_{\text{start}} - T)} \right) \]

Parameter:
- PTX1: \(\alpha \)

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Card 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
PTLAW & PTSTR & PTEND & PTX1 & PTX2 & PTX3 & PTX4 & PTX5 \\
\hline
Card 4 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
PTTAB1 & PTTAB2 & PTTAB3 & PTTAB4 & PTTAB5 \\
\hline
\end{tabular}
\end{table}
Johnson-Mehl-Avrami-Kolmogorov (JMAK):

- Evolution equation:

\[
\frac{dx_b}{dt} = n(T)(k_{ab}x_a - k'_{ab}x_b) \left(\ln \left(\frac{k_{ab}x_a + x_b}{k_{ab}x_a - k'_{ab}x_b} \right) \right)^{\frac{n(T)-1.0}{n(T)}}
\]

\[
k_{ab} = \frac{x_{eq}(T)}{\tau(T)} f(\dot{T}), k'_{ab} = \frac{1.0 - x_{eq}(T)}{\tau(T)} f'(\dot{T})
\]

- Parameter:
 - PTTAB1: \(n(T)\)
 - PTTAB2: \(x_{eq}(T)\)
 - PTTAB3: \(\tau(T)\)
 - PTTAB4: \(f(\dot{T})\)
 - PTTAB5: \(f'(\dot{T})\)
*MAT_254 with JMAK

First example: Phase change test for steel S420
Kirkaldy (equivalent to *MAT_244):

- Evolution equation:

\[
\frac{dX_b}{dt} = 2^{0.5(g-1)} f(C) (T_{start} - T)^{nT} D(T) \frac{X_b^{n_1(1.0-X_b)}(1.0-X_b)^{n_2X_b}}{Y(X_b)}, x_b = X_b x_{eq}(T)
\]

- Parameter:
 - PTX1: \(f(C) \)
 - PTX2: \(n_T \)
 - PTX3: \(n_1 \)
 - PTX4: \(n_2 \)
 - PTTAB1: \(D(T) \)
 - PTTAB2: \(Y(X_b) \)
 - PTTAB3: \(x_{eq}(T) \)
Oddy (equivalent to *MAT_244):

- Evolution equation:

\[
\frac{dx_b}{dt} = n \cdot \frac{x_a}{c_1(T - T_{start})^{-c_2}} \cdot \left(\ln \left(\frac{x_a + x_b}{x_a} \right) \right)^{n-1.0}^{\frac{n}{n}}
\]

- Parameter:
 - PTX1: \(n \)
 - PTX2: \(c_1 \)
 - PTX3: \(c_2 \)
MAT_254 / *MAT_GENERALIZED_PHASE_CHANGE

<table>
<thead>
<tr>
<th>Card 5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PTEPS</td>
<td>TRIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 6</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCY1</td>
<td>LCY2</td>
<td>LCY3</td>
<td>LCY4</td>
<td>LCY5</td>
<td>LCY6</td>
<td>LCY7</td>
<td>LCY8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 7</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCY9</td>
<td>LCY10</td>
<td>LCY11</td>
<td>LCY12</td>
<td>LCY13</td>
<td>LCY14</td>
<td>LCY15</td>
<td>LCY16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card 8</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCY17</td>
<td>LCY18</td>
<td>LCY19</td>
<td>LCY20</td>
<td>LCY21</td>
<td>LCY22</td>
<td>LCY23</td>
<td>LCY24</td>
</tr>
</tbody>
</table>

- **PTEPS:** Table ID for transformation induced strains
- **TRIP:** Flag for transformation induced plasticity (active for TRIP.gt.0)
- **GRAIN:** Initial grain size
- **LCYxy:** Load curve or table ID for yield stress vs. equivalent plastic strain (vs. strain rate vs. temperature)
Residual stresses

Nitschke-Pagel test

- Temperature
- Longitudinal stresses
- Equivalent plastic strain
- Transversal stresses
Residual stresses

Nitschke-Pagel test

- Temperature
- Longitudinal stresses
- Equiv. plastic strain
- Transversal stresses
Residual stresses

Nitschke-Pagel test

![Graph showing residual stresses](image)

<table>
<thead>
<tr>
<th>Num. Reference</th>
<th>Exp. Reference</th>
<th>LS-DYNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Information Day Welding and Heat Treatment, T. Kloeppel
Aachen, Sept. 27th 2016
CONTENT

- Motivation
- *BOUNDARY_THERMAL_WELD_TRAJECTORY
- *MAT_GENERALIZED_PHASECHANGE / *MAT_254
- New contact options in LS-DYNA
- Remarks on Simulation Strategies
*CONTACT_OPTION_THERMAL

- Works for SURFACE_TO_SURFACE type of contacts

If bc_flg = 1, turn off thermal boundary conditions for segments in contact

- If \(L_{\text{min}} < L_{\text{gap}} < L_{\text{max}} \)

 \[h = h_{\text{cond}} + h_{\text{rad}} \]

 With

 \[h_{\text{cond}} = \frac{k}{L_{\text{gap}}} \]

- If \(L_{\text{gap}} < L_{\min} \)

 \[h = h_{\text{cont}} \]

 \[h = h(t,T,P) \]

- If \(L_{\text{gap}} > L_{\text{max}} \)

 \[h = 0, \text{ no contact} \]
Contacts in LS-DYNA – necessary enhancements

- Welding without adding material (laser welding)
 - Ghosting approach, which has been implemented in LS-DYNA in some material formulations no longer feasible
 - Significant sliding of parts before welding

- Edge contact
 - Certain scenarios require to consider heat transfer across the edge of a shell into a surface

![Coupling of a sheet metal to a weld seam](image1.png)

![T-Joint with shells](image2.png)
Welding without filler elements

- New contact formulation
 *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIED_WELD_THERMAL
 - As regions of the surfaces are heated to the welding temperature and come into contact, the nodes are tied
 - Regions in which the temperature in the contact surface is always below the welding temperature, standard sliding contact is assumed
 - Heat transfer in the welded contact zones differs as compared to unwelded regions

- Right now, only implemented for contact in SMP (share memory parallel), MPP versions to follow
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIED_WELD_THERMAL

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Card 4</td>
<td>TEMP</td>
<td>CLOSE</td>
<td>HWELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card 5</td>
<td>K</td>
<td>Hrad</td>
<td>H0</td>
<td>LMIN</td>
<td>LMAX</td>
<td>CHLM</td>
<td>BC_FLAG</td>
</tr>
</tbody>
</table>

- Card 4 is read if TIED_WELD is set
 - TEMP: Welding temperature
 - CLOSE: maximum contact gap for which tying is considered
 - HWELD: Heat transfer coefficient for welded regions

- Card 5 is standard for THERMAL option
 - H0: Heat transfer coefficient for unwelded regions
Example: butt weld

- During welding the blocks are allowed to move
- Assumption: Insulation in unwelded state, perfect heat transfer after welding
Example: laser welding

- During welding the sheets are allowed to move
- A very high heat conductivity in the contact area is assumed
Thermal edge contact

- Activated for ALGO.eq.2 or 3 (one way)
- Can be used in a variety of contact types
 - SURFACE_TO_SURFACE, NODES_TO_SURFACE
 - SPOTWELD
 - TIED_SHELL_EDGE_TO_SOLID, TIED_SHELL_EDGE_TO_SURFACE
Thermal edge contact + welding contact

Example:
- Laser welding of a butt weld of a shell structure
- Welded area discretized with solids
- Shell elements tied to the solid elements
Thermal edge contact + welding contact

Example:
- Laser welding of a butt weld of a shell structure
- Welded area discretized with solids
- Shell elements tied to the solid elements
Thermal edge contact + welding contact

Example:
- Laser welding of a butt weld of a shell structure
- Welded area discretized with solids
- Shell elements tied to the solid elements
CONTENT

■ Motivation

■ *BOUNDARY_THERMAL_WELD_TRAJECTORY

■ *MAT_GENERALIZED_PHASECHANGE / *MAT_254

■ New contact options in LS-DYNA

■ Remarks on Simulation Strategies
Remarks on Simulation Strategies

- Coupled thermo-mechanical analysis
 - Default strategy in LS-DYNA
 - Staggered approach

- De-coupled approach
 - Run thermal problem first
 - Use results of thermal run as boundary condition
 *LOAD_THERMAL_D3PLOT
 - Yields the same results, if output frequency of the thermal run is sufficiently high
 - Might be easier in terms of boundary conditions for the thermal run
 - Allows to easily test variations of the mechanical model
 - Re-implementation to accept thermal thick shell results
Thank you!