Basics of Welding Simulation and Heat Treatment Simulation
Applications and Benefits

Infotag Schweißen und Wärmebehandlung
Zürich

Dr.-Ing. Tobias Loose
Ingenieurbüro Tobias Loose, Herdweg 13, D- 75045 Wössingen
loose@tl-ing.de www.tl-ing.eu
Numerical Simulation for Welding and Heat Treatment since 2004

- Consulting
- Training
- Support
- Software Development
- Software Distribution

for Welding Simulation and Heat Treatment Simulation

Internet:
- DEutsch: www.loose.at
- ENglisch: www.tl-ing.eu
- ESpañol: www.loose.es
Motivation

and Examples
Welding of a T-Joint

- Double sided T-Joint $a = 4 \text{ mm}$
- Plate S355 thickness 8 mm
- 3 Tacks double sided
- Travel speed 80 cm/min
- Current: 390 A
- Voltage: 30 V

- Start Time Tack 1: 0 s
- Start Time Tack 2: 20 s
- Start Time Weld 1: 1000 s
- Start Time Weld 2: 1023 s
- Weld 1 and Weld 2 have the same travel direction
Process Simulation with SimWeld

Input-Parameter SimWeld

<table>
<thead>
<tr>
<th>Workpiece parameters (Ctrl + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
</tr>
<tr>
<td>EN ISO 9692-1: 2003 (D)</td>
</tr>
<tr>
<td>Joint type</td>
</tr>
<tr>
<td>Square edges (3:1:1)</td>
</tr>
<tr>
<td>width</td>
</tr>
<tr>
<td>40.00 [mm]</td>
</tr>
<tr>
<td>height</td>
</tr>
<tr>
<td>1.000 [mm]</td>
</tr>
<tr>
<td>t1</td>
</tr>
<tr>
<td>8.000 [mm]</td>
</tr>
<tr>
<td>t2</td>
</tr>
<tr>
<td>8.000 [mm]</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>0.000 [mm]</td>
</tr>
<tr>
<td>radius</td>
</tr>
<tr>
<td>-1.000 [mm]</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>-1.000 [mm]</td>
</tr>
<tr>
<td>alpha</td>
</tr>
<tr>
<td>90.000 [']</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Plates</td>
</tr>
<tr>
<td>S355</td>
</tr>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Custom</td>
</tr>
<tr>
<td>across</td>
</tr>
<tr>
<td>45.000 [']</td>
</tr>
<tr>
<td>along</td>
</tr>
<tr>
<td>0.000 [']</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process parameters (Ctrl1 + 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process parameters</td>
</tr>
<tr>
<td>Welding speed</td>
</tr>
<tr>
<td>80.00 [cm/min]</td>
</tr>
<tr>
<td>Initial temperature</td>
</tr>
<tr>
<td>20.00 [°C]</td>
</tr>
<tr>
<td>Simulation Options</td>
</tr>
<tr>
<td>Consider gap</td>
</tr>
<tr>
<td>Calculation length</td>
</tr>
<tr>
<td>User defined</td>
</tr>
<tr>
<td>Calculation length</td>
</tr>
<tr>
<td>100.00 [mm]</td>
</tr>
<tr>
<td>Mesh density</td>
</tr>
<tr>
<td>normal (1.0x)</td>
</tr>
<tr>
<td>Resources: medium</td>
</tr>
<tr>
<td>Accuracy: medium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torch parameters (Ctrl + 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
</tr>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>1.6 [mm]</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>SG-Fe</td>
</tr>
<tr>
<td>Contact noz. t.</td>
</tr>
<tr>
<td>20.00 [°C]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>0.000 [mm]</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>0.000 [mm]</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>20.000 [mm]</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>20.000 [mm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along</td>
</tr>
<tr>
<td>0.000 [']</td>
</tr>
<tr>
<td>Across</td>
</tr>
<tr>
<td>0.000 [']</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select...</td>
</tr>
<tr>
<td>Custom</td>
</tr>
<tr>
<td>Process type</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Wire feed</td>
</tr>
<tr>
<td>7.000 [m/min]</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>30.000 [V]</td>
</tr>
<tr>
<td>Choke</td>
</tr>
<tr>
<td>30.000 [%]</td>
</tr>
</tbody>
</table>
SimWeld Results

- $a = 4.4 \, \text{mm}$
- $I = 390 \, \text{A}$
- $V = 29.2 \, \text{V}$
Temperature

Tack 1

Weld 1

Tack 2

Weld 2
z-Distortion at Evaluation Path
transformed to flat left side
Curved Hollow Section Beam

Length 4,00 m
8 2-layered Welds
12 single layered Welds
Curved Hollow Section Beam
Autobody Sheet
Welding

z-displacement 5-times scaled
Weld of a Pipe with 40 mm Wall Thickness
made of Alloy 625

60 Layer - GMAW

93 Layer - TIG
Weld of a Pipe with 40 mm Wall Thickness made of Alloy 625 - 60 Layer GMAW

Temperature Layer 44

Equivalent Plastic Strain
Temperature Field Multilayered Weld
2D Metatransient
Multilayered Weld T-Joint with large Plate Thickness
2D-Analysis LS-DYNA

2D plain strain
Plate: 300 x 80 mm
Stiffner: 150 x 24 mm
Fillet Weld: a = 13 mm
Material: 1.4301

Tack a = 1,4 mm
with failure on strain KFAIL = 0,25 m/m

Initial gap between stiffner and plate: 0,1 mm

Symmetry boundary conditions on left and right side.
Multilayered Weld T-Joint with large Plate Thickness
2D-Analysis LS-DYNA – plastic strain
Prediction of Weld Quality
Microstructure and Mechanical Properties

Material Specification
Chemical Composition

WeldWare®

WPS
Welding Procedure Specification

SimWeld®

W355

S690

• Weld-Pool
• HAZ
• Microstructure
• Yield Strength
• Ultimate Strength
• Hardness
• Ultimate Elongation

Martensite
$t_{8.5,5}$-time of view-point

High energy per unit length

Ultimate stress

Yield stress

Martensite
$t_{8.5,5}$-time of view-point

High energy per unit length
Quenching of a Gear made of S355
Temperature Curve

Quenching Gear # www.loose.at

Edge
Middle
Quenching of a Gear made of S355
Results of Heat Treatment Simulation

Martensit (right)
Hardness HV (bottom left)
Yield (bottom right)
Plate with the dimensions 270 x 200 x 30 mm³ with V/U-shaped notch
Austenitic stainless steel (316LNSPH, Re = 275 MPa)
2 Layer welding of the notch with same material: 316L
TIG Welding with U = 9 V, I = 155 A, v = 0.67 mm/s

Validation
IIW Round Robin Versuch

Mesuread and calculated results
Longitudinal residual stresses

In: Cherjak, H. (Ed.); Enzinger, N. (Ed.): Mathematical Modelling of Weld Phenomena Bd. 9, Verlag der Technischen Universität Graz, 2010
Validation
IIW Round Robin Versuch

Transversal Stress

Longitudinal Stress

SYSWELD

LS-DYNA

Welding direction
Validation Nitschke-Pagel Test

Distortion w:
- Experiment: 0.34 mm
- Sysweld: 0.32 mm
- LS-DYNA: 0.34 mm

Makrosection
Temperature: 100 .. 1500 °C
Result
Benefits
Results from Simulation of Welding and Heat Treatment

• Process simulation welding (SimWeld)
 – weld pool formation
 – heat input / heat generation
 – local temperature field, cooling time in the weld and heat affected zone

• Structure simulation welding (DynaWeld)
 – temperature field in the whole assembly during welding, cooling time
 – distortion during welding and cooling
 – clamping forces and bearing reactions
 – plastic strains, strain hardening
 – residual stresses, elastic or plastic reserves
 – microstructure / areas with change of microstructure

• Heat treatment simulation
 – temperature during quenching
 – carburization and depth of carburization for case hardening
 – microstructure and hardness
 – distortion / distortion after hardening
Benefits from Simulation of Welding and Heat Treatment

- Adjustment of Process Parameter
- Design of Geometrie
 - optimization of geometry concerning acceptable distortions
 - determination of invers distorted geometry for the design of forming
 - design of gap for laser welding
- Heat Management
 - preheating temperature, intermediate temperature
 - design of desired microstructure
- Design of Clamps
 - predeformation
 - clamp forces
- Design of the Order of the Welds
- Observation of the State of Stresses
 - prestressed zones / tension zones
 - delimitation of plastic strain
- Special Tasks ...
More Benefits of Welding and Heat Treatment Simulation

- Simulation is available in early stage of design.
- Simulation is available without any fabrication place.
- Simulation is helpful for the analysis of damages.
- Simulation helps to understand the process and its events.
- Simulation is helpful for education and training.
- Welding and heat treatment simulation provides the state of the assembly for further simulation analyses.
Sources of Material Data for Welding and Heat Treatment

• Experiment
 – Execution of tests

• References
 – Papers with test results for material data
 – Material data sheet

• Software / Material Simulation
 – WeldWare®
 – JMatPro
 – MatCalc
Depending on Temperature

Elasticity-Modul

Elasticity-Modul in N/mm²

Temperature in °C

1. Austenit
Ferrit
Perlit
Bainit
Martensit
Base Material
Filler Liquid
Tempered Martensit
Tempered Bainit
Depending on Microstructure

![Graph showing Yield Stress (Re) depending on temperature for different microstructures]
Description of phase transformation (ZTU, ZTA)

CCT-Data
WeldWare®

Microstructure Simulation with LS-DYNA *MAT_254
Thermal strain

![Graph showing thermal strain vs temperature]

Thermal Strain in m/m

- **ALPHA**
- **GAMMA**

Temperature in °C

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Transformation effects

Graph showing the relationship between temperature and deformation in °C and mm/mm, with lines representing calculated deformation, thermal deformation martensite, thermal deformation austenite, and austenite content.
Simplified Approach

Graph showing the relationship between temperature in °C and deformation in mm/mm, with lines indicating heating and cooling processes.
Deactivation of not yet deposited material

Deactivated material (blue)
Aktivation criterion: Temperature

Peak Temperature
Reset of plastic strain

Above „Annealing“-Temperature the equivalent plastic strain is kept zero.
Heat Input
Simulation with SimWeld

Process Simulation GMAW

Numerical Prediction of Equivalent Heat Source
SimWeld Preprocessing

- Definition of:
 - weld preparation
 - geometry and geometric parameter
 - work position
 - material
SimWeld Preprocessing

• Definition of:
 – wire: feed, diameter, material,
 – stick out
 – travel speed
 – angle of torch, stabbing, slabbing, skew
 – shielding gas
 – machine settings U, I
 – process type normal, pulsed U/I, pulsed I/I
 – pulse parameter
SimWeld Results

- Equivalent Heat Source
- Weld Pool Geometry
- Droplet
- Wire Temperature
- Energy, Voltage, Currency
- Temperature Curve
Estimation of Heat Source Parameter from Welding Procedure Specification (WPS) for Arc Weld, TIG, GMAW, SAW

- **Velocity**
- **Estimation of weld pool geometry**
 - length = length of heat source
 - depth = depth of heat source
 - width = width of heat source
- **Energy input per time**
 - Voltage
 - Currency
 - Energy per unit length
- **Estimation of efficiency**
 - TIG: 0,75
 - GMAW: 0,8
 - SAW: 1,0
Doppelt-Elipsoide Heat Source (Loose) with constant heat source density

Heat Source Code DynaWeld

LE Solid
LEP Solid Part
TRLE Solid trajectory reference
TSLE Solid trajectory surface
SLE Shell
SLEP Shell Part
SHLE Shell Surface
SHLEP Shell Surface Part

Locale coordinate system

Geometry function (double-ellipsoid)

Parameter:
- **Q**: total energy per unit time
- **qf**: source density front
- **qr**: source density rear
- **ff**: ratio front
- **fr**: ratio rear
- **af**: radius front
- **ar**: radius rear
- **b**: radius width
- **c**: radius depth

qf, qr: Wärmequelle dichte konstant:
- Wärmeeintrag qf für \((u/af)^2 + (v/c)^2 + (w/b)^2 \leq 1\)
- Wärmeeintrag qr für \((u/ar)^2 + (v/c)^2 + (w/b)^2 \leq 1\)

\[
qf = 1,5 \times Q \times ff / (af^2 \times b^2 \times c^2)
\]
\[
qr = 1,5 \times Q \times fr / (ar^2 \times b^2 \times c^2)
\]
\[
ff + fr : = 2
\]
Laser, Electron Beam, Laser-Hybrid

Adjustment due to Microsection

- Velocity
- Estimation of the geometry of weld pool from microsection
- Geometry of weld pool = geometry of equivalent heat source
- Adjustment of heat input until calculated liquidus line fits liquidus line of microsection
Double Conical Heat Source (Loose) with constant heat source density

Geometry function (double-ellipsoid)

Parameter:
- \(q_1 \): source density top
- \(q_2 \): source density bottom
- \(r_1 \): radius top
- \(r_2 \): radius middle
- \(r_3 \): radius bottom
- \(v_1 \): \(v \)-coordinate top
- \(v_2 \): \(v \)-coordinate middle
- \(v_3 \): \(v \)-coordinate bottom

\(q_1, q_2 \): heat source density constant

Heat Source Code DynaWeld
- TRLK: Solid
- LK: Solid
- LKP: Solid Part

Locale coordinate system

Heat Source

v1

v2

v3
Local Coordinate System Heat Source Moving along Trajectory

ay:
Rotation of the reference around the trajectory. The reference needs to be adjusted in torch or beam direction.

v-offset:
Movement of heat source in direction of torch.

w-offset:
Movement lateral to the direction of torch and lateral to the direction of travel.

For the Heat Sources with the DynaWeld Code TSxx only a trajectory needs to be defined. The Reference is automatically set normal to the surface.

Global Coordinate System

- **X:**
- **Y:**
- **Z:**

Local Coordinate System Heat Source

- **u:** Trajektory direction
- **v:** Torch direction
- **w:** Lateral direction
Final Adjustment of Heat Input
Determination of calibration factor kf to achieve the target heat input

<table>
<thead>
<tr>
<th>Heat Input Adjustment:</th>
<th></th>
<th></th>
<th></th>
<th>k.f. old</th>
<th>k.f. new</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weld 1001</td>
<td>4212,63</td>
<td>5525,82</td>
<td>1,31</td>
<td>1,00</td>
<td>1,31</td>
</tr>
<tr>
<td>Weld 1002</td>
<td>5838,02</td>
<td>5525,82</td>
<td>0,95</td>
<td>1,00</td>
<td>0,95</td>
</tr>
</tbody>
</table>
Metatransient Heat Source
with constant heat source density in the whole part

Heat Source code DynaWeld
PH Solid Part
PHS Shell Part

Parameter:
Q: total energy per unit time

q: heat source density constant over all elements of considered part.
Metatransient Method with Energy calibration

Benefit of Energy Calibration:
Enables the application of the Metatransient Method from SimWeld simulation or WPS.
Metatransient Method with Energy calibration

MSG-023
Time = 1.25
Contours of Temperature, middle
min = 29.9797, at node # 116173
max = 1999.29, at node # 119772

MSG
Time = 13816
Contours of Temperature, middle
min = 20.4167, at node # 216659
max = 1928.86, at node # 186712
max displacement factor = 0
Process
Welding

- Heating
- Cooling
- Reheating
 - Tempering Effects
- Grinding and Rewelding
Heat Treatment

Heating
Thermal Heating
Inductive Heating

Carburisation

Quenching

Tempering
Process Chain
Manufacturing of a Box
Task and Model

Forming:
• The roof geometry is made by forming a 3 mm thick sheet (1.4301)

Assembly:
• Add the sidewall

Welding:
• Weld the sidewall to the roof

Clamp and predeformation:
• press the sidewall on measure

Assembly:
• Add the bottom plate

Welding:
• Weld the bottom plate to the sidewall

Unclamping

Model:
• Solid-element model
• Material model (*MAT_270) is used in all steps
• History variables and deformations are kept from one step to an other
• Implicit analysis in all steps
Deep-Drawing of a Cup from a Laser Welded Sheet
Task and Model

Welding:
- Two sheets (S355) with 1 mm wall thickness are laser welded

Forming:
- The welded and distorted sheet is clamped
- A globular die is pressed slow in the sheet.

Model:
- Shell-elements are used for the sheet, solid elements are used for the clamps and the die
- Same material model (*MAT_244) is used in all steps
- History variables, phase proportions and deformations are kept from one step to another
- Welding: implicit analysis, Forming: explicit analysis
Stresses and Strains in Midsurface of Shell after welding and deep drawing

top left:
effective stress before unclamping
200 .. 1100 N/mm²

bottom left:
effective stress after unclamping
0 .. 200 N/mm²

bottom right:
plastic strain after unclamping
0 .. 0.65 m/m
Microstructure during Deep-Drawing

top left:
Ferrit proportion

top right:
Bainit proportion

bottom right:
Martensit proportion
Effective Stress during Forming
Influence of Material Property Change from Welding

CUP
Time = 0.0059
Contours of Effective Stress (V-m)
reference shell surface
min = 58.1917, at elem# 1630
max = 1037.41, at elem# 2204

Fringe Levels
1.100e+03
1.055e+03
1.000e+03
9.650e+02
9.200e+02
8.750e+02
8.300e+02
7.850e+02
7.400e+02
6.950e+02
6.500e+02
6.050e+02
5.600e+02
5.150e+02
4.700e+02
4.250e+02
3.800e+02
3.350e+02
2.900e+02
2.450e+02
2.000e+02
Thinning of the Sheet
Influence of Material Property Change from Welding
Process chain
Heat Treatment - Welding
Welding after Heat Treatment
Results of Process Chain Simulation
Heat Treatment - Welding

Special Contact during Welding

Equivalent Stress after welding

Martensit before welding

Martensit after welding
Thanks for your Attention!

- Forming
- Heat Treatment
- SimWeld
- DynaWeld
- Structure Analysis
- Post Weld Heat Treatment
- Crash
- Assembly