

Sheet metal forming simulation with IGA in LS-DYNA

Stefan Hartmann

DYNAmore GmbH, Stuttgart, Germany

Dave Benson former: Professor for Structural Engineering, UC San Diego, CA, USA LSTC, Livermore, CA, USA

Liping Li, Attila Nagy, Isheng Yeh LSTC, Livermore, CA, USA

15th German LS-DYNA Forum, Bamberg, Germany June 10-12, 2018

ware Forming simulation with IGA in LS-DYNA

Outline

- Introduction to IGA in LS-DYNA
 - Motivation & Definition
 - NURBS-based finite elements in LS-DYNA
 - Analysis capabilities
- A multistage sheet metal forming process
 - Stage 1 Gravity
 - Stage 2 Deep drawing
 - Stage 3 Trimming
 - Stage 4 Springback analysis
- Summary and Outlook

fware Forming simulation with IGA in LS-DYNA

Isogeometric Analysis (IGA) – motivation & definition

Reduce effort of geometry conversion from CAD into a suitable mesh for FEA standard FE

ISOGEOMETRIC

- Same description of the geometry in the design (CAD) and in the analysis (FEA)
- Common geometry descriptions in CAD
 - NURBS (Non-uniform rational B-splines)

- \rightarrow most commonly used
- T-splines, LR-splines, HRB-splines, subdivision surfaces
- ... and others

NURBS-based finite elements in LS-DYNA

Forming simulation with IGA in LS-DYNA

NURBS-based finite elements in LS-DYNA

NISR/NISS – Number of Interpolation Elements per NURBS-Element (r-/s-dir.) important for post-processing, boundary conditions and contact treatment

Isogeometric Analysis (IGA) – NURBS

ftware Forming simulation with IGA in LS-DYNA

Analysis capabilities with NURBS in LS-DYNA – 1

- Shell-element types (with/without rotation DOFs)
 - Shear deformable (Reissner-Mindlin)
 - Thin (Kirchhoff-Love)
 - Blended shells

patch 1 patch 2

Add rot DOFs along CPs

Options

- Trimmed and untrimmed NURBS patches
- Different integration rules
- Large material library

Solid-elements

Implicit static and dynamic
 i.e. eigenvalue analysis

Toyota Camry – Inner hood www.ccsa.gmu.edu/models/2012-toyota-camry/

Truncated hierarchical T-spline Carnegie Mellon University Honda Motor Co., Ltd.

LST Livermore So Technology C

ware Forming simulation with IGA in LS-DYNA

Analysis capabilities with NURBS in LS-DYNA – 2

- Explicit dynamics
 - Stable timestep estimates
 - Conventional mass scaling
- Parallelization
 - SMP: shared memory parallel
 - MPP: massively parallel processing (domain decomposition)
 - Very good speed-up
- Boundary conditions
 - All penalty contact via interpolation elements
 - A NURBS-contact via IGACTC=1 in ***CONTROL_CONTACT**
 - Pointwise boundary conditions (Dirichlet & Neuman) via
 *CONSTRAINED_NODE_TO_NURBS_PATCH
 - *LOAD_NURBS_SHELL (line/pressure)
- Coupling to standard finite elements and other stuff ... (i.e.) FSI

Chevrolet Camaro with Facundo del Pin

Analysis capabilities with NURBS in LS-DYNA – 3

Features for forming simulations

Stress/strain/thickness mapping via *INTERFACE_SPRINGBACK (dynain-file) for multistage analysis

- Initialization via *INITIAL_STRESS_SHELL/SOLID_NURBS_PATCH
- Thinning of shells (ISTUPD=1 in *CONTROL_SHELL)
- Trimming after forming (*CONTROL_FORMING_TRIMMING)
- One-step solver available for shells and solids (*CONTROL_FORMING_ONESTEP)

Frequency domain steady state dynamics for shells and solids

Outline

- Introduction to IGA in LS-DYNA
 - Motivation & Definition
 - NURBS-based finite elements in LS-DYNA
 - Analysis capabilities

A multistage sheet metal forming process

- Stage 1 Gravity
- Stage 2 Deep drawing
- Stage 3 Trimming
- Stage 4 Springback analysis

Summary and Outlook

Forming simulation with IGA in LS-DYNA

A multistage sheet metal forming process

- Stage 1 Gravity
 - Placing the blank onto the forming tool
 - Implicit static analysis
 - MAP results to next step (current geometry, stresses, strains, history variables, ...)
- Stage 2 Deep drawing
 - Explicit analysis
 - MAP results to next step
- Stage 3 Trimming
 - No "real" analysis
 - Cutting the formed blank
 - MAP results to next step
- Stage 4 Springback
 - Implicit static analysis
 - Find equilibrium for final geometry

How to map the data

*INTERFACE SPRINGBACK LSDYNA

	1	2	3	4	5	6	7	8
Card 1	PSID	NSHV	FTYPE		FTENSR	NTHHSV		INTSTRN

- **PSID** Part set ID (***SET_PART**)
- **NSHV** Number of history variables to be initialized
- **INTSTRN** Flag to output strains (***INITIAL_STRAIN_SHELL**)
- The above keyword invokes LS-DYNA to write a "dynain"-file including:
 - *INITIAL_STRESS_SHELL_NURBS_PATCH

	1	2	3	4	5	6	7	8
Card 1	EID	NPLANE	NTHICK	NHISV	LARGE			
Card 2	R	S	Т					
Card 3	SIGXX	SIGYY	SIGZZ	SIXY	SIGYZ	SIGZX	EPS	
Card 4	HISV1	HISV2	HISV3	HISV4	HISV5	HISV6	HISV7	HISV8
Card								

*INITIAL_STRAIN_SHELL_NURBS_PATCH

How to map the data

Effective Stress at the end of op10 and start of op20

Forming simulation with IGA in LS-DYNA

ware Forming simulation with IGA in LS-DYNA

LISTC Livermore Software Forming simulation with IGA in LS-DYNA

Standard Finite Elements

forming / D-WZG_forming Time = 0, #nodes=15519, #elem=15555

Time = I ≫ I ☑ Post

Forming simulation with IGA in LS-DYNA

Standard Finite Elements

forming / D-WZG_forming Time = 0.0155, #nodes=27514, #elem=26775

Forming simulation with IGA in LS-DYNA

Standard Finite Elements

forming / D-WZG_forming Time = 0.0155, #nodes=27514, #elem=26775

Forming simulation with IGA in LS-DYNA

Standard Finite Elements

forming / D-WZG_forming Time = 0.0155, #nodes=27514, #elem=26775

Forming simulation with IGA in LS-DYNA

Standard Finite Elements

ware Forming simulation with IGA in LS-DYNA

Standard Finite Elements

tware Forming simulation with IGA in LS-DYNA

fware Forming simulation with IGA in LS-DYNA

vermore Software Forming simulation with IGA in LS-DYNA

Isogeometric Elements

forming / D-IGA_forming Time = 0.0155

LINE Forming simulation with IGA in LS-DYNA

Isogeometric Elements

forming / D-IGA_forming Time = 0.0155

ware Forming simulation with IGA in LS-DYNA

Isogeometric Elements

Forming simulation with IGA in LS-DYNA

Isogeometric Elements

ware Forming simulation with IGA in LS-DYNA

Comparison of results after deep drawing

Effective plastic strain

Standard Finite Elements

Isogeometric Elements

Forming simulation with IGA in LS-DYNA

Stage 3 – Trimming

*CONTROL_FORMING_TRIMMING

	1	2	3	4	5	6	7	8
Card 1	PSID		ITYP					

PSID Part set ID for trimming (***SET_PART**)

*DEFINE CURVE TRIM 3D

	1	2	3	4	5	6	7	8
Card 1	TCID	TCTYPE	TFLG	TDIR	TCTOL	TOLN	NSEED1	NSEED2
Card 2	СХ		СҮ		CZ			

- Currently only 3D-trimming (trimming curve defined in 3D physical space)
- Map 3D-physical points into parametric space of NURBS-patch to define new trimmed NURBS-patch
- Map the results data (stress, strain, ...) from original patch to trimmed one

Stage 3 – Trimming: Comparisson of results

ware Forming simulation with IGA in LS-DYNA

ftware Forming simulation with IGA in LS-DYNA

ftware Forming simulation with IGA in LS-DYNA

Stage 4 – Springback analysis

Standard Finite Elements

ware Forming simulation with IGA in LS-DYNA

Stage 4 – Springback analysis

- Isogeometric Elements
 - … not yet ready
 - ... work in progress

Outline

- Introduction to IGA in LS-DYNA
 - Motivation & Definition
 - NURBS-based finite elements in LS-DYNA
 - Analysis capabilities

A multistage sheet metal forming process

- Stage 1 Gravity
- Stage 2 Deep drawing
- Stage 3 Trimming
- Stage 4 Springback analysis

Summary and Outlook

tware Forming simulation with IGA in LS-DYNA

Summary

- IGA in LS-DYNA allows the mapping of results data to enable multistep sheet metal forming analysis by supporting
 - *INTERFACE_SPRINGBACK_LSDYNA
 - *INITIAL_STRESS/STRAIN_SHELL_NURBS_PATCH
- Still missing / To-Do:
 - Enabling springback analysis
 - Adaptivity
 - ... and a bunch of other things

BMW AG

Outlook

- We are constantly working to increase features for IGA in various areas, like
 - Robust coupling of trimmed NURBS patches (explicit and implicit)
 - Better integration of IGA with Pre- and Post-Processing
 - ... what customers are requesting

Thank you!

