15. Deutsches LS-DYNA Forum

Updated Review of

Solid Element Formulations in LS-DYNA

Properties, Limits, Advantages, Disadvantages

Christoph Schmied, DYNAmore
Tobias Erhart, DYNAmore

Bamberg, 17 October 2018

Motivation

Solid elements are three-dimensional finite elements that can model solid bodies and structures without any a priori geometric simplification.

- No geometric, constitutive and loading assumptions required.
- Boundary conditions treated more realistically. (compared to shells or beams).
- FE mesh visually looks like the physical system. but...
- Higher effort: mesh preparation, CPU time, post-processing, ...
- Expensive mesh refinement: Curse of dimensionality.

- Often poor performance for thin-walled structures (locking problems).

Applications

- Foam Structures
- Rubber components
- Cast iron parts
- Solid barriers
- Plastic parts
- Bulk forming
- Thick metal sheets
- Elastic tools
- Impact analysis
- ...

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element: default element type
EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8-node element with nodal rotations

EQ. $4 \quad$ S/R quadratic tetrahedron element with nodal rotations
EQ. 101 point tetrahedron
EQ. $13 \quad 1$ point nodal pressure tetrahedron
EQ. 152 point pentahedron element
EQ. 164 or 5 point 10-noded tetrahedron
EQ. 17 10-noded composite tetrahedron

	EQ. 23	20 -node solid formulation
EQ. 24	27-noded, fully integrated S / R	(Elements
	quadratic solid element	(use R10)

EQ. 1151 point pentahedron element with hourglass control

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio,

Standard hexahedral elements

EQ. 1 Constant stress solid element: default element type

EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8 -node element with nodal rotations

EQ. $4 \quad$ S/R quadratic tetrahedron element with nodal rotations
EQ. 101 point tetrahedron
EQ. $13 \quad 1$ point nodal pressure tetrahedron
EQ. 152 point pentahedron element
EQ. 164 or 5 point 10-noded tetrahedron
EQ. 17 10-noded composite tetrahedron
EQ. 23 20-node solid formulation
EQ. 24 27-noded, fully integrated S/R quadratic solid element
EQ. 1151 point pentahedron element with hourglass control

Standard hexahedra elements in LS-DYNA

- underintegrated constant stress
- efficient and accurate
- even works for severe deformations
- needs hourglass stabilization: choice of hourglass formulation and values remains an issue

ELFORM = 2

- selective reduced integrated brick element (volumetric locking alleviated)
- slower than ELFORM=1
- more unstable in large deformation applications
- no hourglass stabilization needed
- too stiff in many situations, especially for poor aspect ratios (shear locking)

Hourglass control for ELFORM=1

*HOURGLASS: $\mathrm{IHQ}=1 . .5$

- viscous form $(1,2,3)$ for higher velocities
- stiffness form $(4,5)$ for lower velocities
- exact volume integration recommended $(3,5)$

*HOURGLASS: IHQ = 6

- the QBI (Quintessential Bending Incompressible) hourglass control by Belytschko and Bindeman
- hourglass stiffness uses elastic constants
- recommended in most situations
- sometimes modified QM makes sense (watch hourglass energy)

*HOURGLASS: IHQ = 7/9

- similar to type 6, but less experience
- type 7 uses total deformation instead of updated
- type 9 should provide more accurate results for distorted meshes

Hourglassing pattern

Property of ELFORM=2

Shear locking

- Pure bending modes trigger spurious shear energy
- Getting worse for poor aspect ratios

$$
\varepsilon_{x x}=2 \xi_{y} / l_{x}, \varepsilon_{y y}=0, \gamma_{x y}=\xi_{i}^{\prime}\left(l_{\underline{y}}\right)
$$

Alleviation of shear locking

1. Underintegration \rightarrow ELFORM $=1$
2. Modified strain formulations \rightarrow modified Jacobian matrix
$\longrightarrow \varepsilon_{x x}=2 \xi_{y} / l_{x}, \varepsilon_{y y}=0, \gamma_{x y}=\ldots=\xi_{1}^{\prime}\left(l_{x}\right) ; \quad \Longrightarrow$ ELFORM $=-1,-2$

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended

 for elements with poor aspect ratio, accurate formulationEQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation
Improved hexahedral elements ement
default element type
EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8 -node element with nodal rotations

EQ. $4 \quad$ S/R quadratic tetrahedron element with nodal rotations
EQ. 101 point tetrahedron
EQ. $13 \quad 1$ point nodal pressure tetrahedron
EQ. 152 point pentahedron element
EQ. 16
EQ. 17
EQ. 23
EQ. 24
4 or 5 point 10-noded tetrahedron
10-noded composite tetrahedron
20-node solid formulation
27-noded, fully integrated S/R
quadratic solid element
EQ. 1151 point pentahedron element with hourglass control

Solid element formulations -1 and -2

Thomas Borrvall: „A heuristic attempt to reduce transverse shear locking in fully integrated hexahedra with poor aspect ratio", Salzburg 2009

Original Jacobian matrix

$$
J_{\mathrm{ij}}^{\mathrm{orig}}=\frac{\partial x_{i}}{\partial \xi_{j}}=x_{I i} \frac{1}{8}\left(\xi_{j}^{I}+\xi_{j k}^{I} \xi_{k}+\xi_{j l}^{I} \xi_{l}+\xi_{123}^{I} \xi_{k} \xi_{l}\right)
$$

Modification of the Jacobian matrix

Reduction of spurious stiffness without affecting the true physical behavior of the element

$$
J_{\mathrm{ij}}^{\mathrm{mod}}=x_{I i} \frac{1}{8}\left(\xi_{j}^{I}+\xi_{j k}^{I} \xi_{k} \kappa_{j k}+\xi_{j l}^{I} \xi_{l} \kappa_{j l}+\xi_{123}^{I} \xi_{k} \kappa_{j k} \xi_{l} \kappa_{j l}\right)
$$

aspect ratios between dimensions computed efficiently

- computed once at time zero
- with edge lengths through element center

Improved hexahedral elements

Identical with ELFORM=2 but accounted for poor aspect ratio in order to reduce shear locking

ELFORM = -1

- efficient formulation
- sometimes hourglass tendencies

ELFORM =-2

- accurate formulation
- higher computational cost than type -1

CPU cost compared to ELFORM=2 for explicit analysis
≈ 1.2 (ELFORM=-1)
≈ 2.0 to 3.5 (ELFORM=-2)
but implicit ELFORM -2 is a good choice!

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element: default element type

EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8 -node element with nodal rotations

EQ. $4 \quad$ S/R quadratic tetrahedron element with nodal rotations
EQ. 101 point tetrahedron
EQ. $13 \quad 1$ point nodal pressure tetrahedron
EQ. 152 point pentahedron element
EQ. $16 \quad 4$ or 5 point 10-noded tetrahedron

Quadratic hexahedron element formulations (use R10)

Good bending behaviour

ELFORM = 23
8 corner + 12 edge nodes

14 integration points

ELFORM = 24
8 corner + 12 edge

+ 6 surface
+1 center node

$$
\begin{aligned}
& 27 \text { integration points } \\
& (3 \times 3 \times 3)
\end{aligned}
$$

- Fully quadratic displacement field
- 21 degrees of freedom more than ELFORM 23
- S / R integration

Quadratic hexahedron element formulations (use R10)

Automatic node generation similar to *ELEMENT_SOLID_TET4TOTET10

*ELEMENT_SOLID_H8TOH20 *ELEMENT_SOLID_H8TOH27

Mid-nodes automatically generated for straight edges of 8 -noded hexahedron

Good for meshes with initially straight edges

- Boundary conditions partly translated
- Size of time step getting smaller

Quadratic hexahedron element formulations (use R10)

Define nodes a priori with mesh generator / LSPP

Quadratic hexahedron element formulations (use R10)

Define nodes a priori with mesh generator / LSPP

Using *ELEMENT_SOLID_H20/_H27

 all mid-side nodes may be directly accessed e. g. for single point constraints| *ELEMENT_SOLID_H27 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$\# | eid | pid | | | | | | |
| | 1 | 1 | | | | | | |
| \$\# | n1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| \$\# | n11 | n12 | n13 | n14 | n15 | n16 | n17 | n18 |
| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| \$\# | n21 | n22 | n23 | n24 | n25 | n26 | n27 | |
| | 21 | 22 | 23 | 24 | 25 | 26 | 27 | |

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element:
default element type

EQ. $4 \quad$ S/R quadratic tetrahedron element with nodal rotations
EQ. 101 point tetrahedron
EQ. $13 \quad 1$ point nodal pressure tetrahedron
EQ. 152 point pentahedron element
EQ. 164 or 5 point 10-noded tetrahedron
EQ. 17 10-noded composite tetrahedron
EQ. 23 20-node solid formulation
EQ. 24
27-noded, fully integrated S/R quadratic solid element
EQ. 1151 point pentahedron element with hourglass control

Quadratic solid element with nodal rotations

Quasi quadratic

ELFORM = 3

- Quadratic 8 node hexahedron with nodal rotations, i.e. 6 DOF per node
- Full integration (12 point)
- Well suited for connections to shells
- Good accuracy for small strains
- Tendency to volumetric locking possible remedy: incompatible modes

8 nodes with 48 DOFs

20 nodes with 60 DOFs

Pawlak, TP and Yunus, SM: Solid elements with rotational degrees of freedom: Part 1 Hexahedron elements, IJNME 1991

> Teng, H: Solid elements with Rotational Degree of Freedom for Grand Rotation Problems in LS-DYNA, $11^{\text {th }}$ International LS-DYNA Users Conference, 2010

Examples part 1

Implicit elastic bending

- clamped plate of dimensions $10 \times 5 \times 1 \mathrm{~mm}^{3}$
- subjected to 1 Nm torque at the free end
- $\mathrm{E}=210 \mathrm{GPa}$
- analytical solution for end tip deflection: 0.57143 mm
- convergence study with aspect ratio 5:1 kept constant

End tip deflection, different mesh discretizations and element types, error in parenthesis.

Mesh	ELFORM 2	ELFORM -2	ELFORM -1	ELFORM 3	ELFORM23	ELFORM 24
$2 \times 1 \times 1$	$0.0564(90.1 \%)$	$0.6711(17.4 \%)$	$0.6751(18.1 \%)$	$0.4001(30.0 \%)$	$\mathbf{0 . 5 2 6 4 (7 . 8 \%)}$	$\mathbf{0 . 5 5 2 5 (3 . 3 \%)}$
$4 \times 2 \times 2$	$0.1699(70.3 \%)$	$0.5466(4.3 \%)$	$0.5522(3.4 \%)$	$0.4596(19.6 \%)$	$\mathbf{0 . 5 4 5 6 (4 . 5 \%)}$	$\mathbf{0 . 5 5 3 4 ((3 . 1 \%)}$
$8 \times 4 \times 4$	$0.3469(39.3 \%)$	$0.5472(4.2 \%)$	$0.5500(3.8 \%)$	$0.5237(8.4 \%)$	$\mathbf{0 . 5 5 1 7 (3 . 5 \%)}$	$\mathbf{0 . 5 5 4 1 (3 . 0 \%)}$
$16 \times 8 \times 8$	$0.4820(15.7 \%)$	$0.5516(3.5 \%)$	$0.5527(3.3 \%)$	$0.5557(2.8 \%)$	$\mathbf{0 . 5 5 3 7 (3 . 1 \%)}$	$\mathbf{0 . 5 5 4 3 (3 . 0 \%)}$
$32 \times 16 \times 16$	$0.5340(6.6 \%)$	$0.5535(3.1 \%)$	$0.5540(3.1 \%)$	$0.5552(2.8 \%)$	$\mathbf{0 . 5 5 4 3 (3 . 0 \%)}$	$\mathbf{0 . 5 5 4 5 (3 . 0 \%)}$

Plastic bending

- Explicit plastic 3 point bending (prescribed motion)
- Plate of dimensions $300 \times 60 \times 5 \mathrm{~mm}^{3}$

■ *MAT_024 (Aluminum)

Plastic bending

*(...)_H8TOH27

- Bad convergence of ELFORM 2, 3 (stiff behavior)
- Good convergence with types 1, -1, -2
- ELFORM 23, 24 converged for coarse mesh

Plastic bending

CPU time in minutes

Circular tube compression

- *MAT_024 (Aluminium)
- Different mesh sizes: convergence study

Circular tube compression Deformation

Half way compressed

HEX 1
HEX 2/-1/-2
HEX 3
HEX 23
HEX 24

Circular tube compression

Circular tube compression

Results

Circular tube compression

Results
Internal energy

Tube crash

thickness: 2 mm (2 elements) element size: 3.5 mm

SHELL 16

HEX 1 (IHQ6)
$\mathrm{t}_{\mathrm{CPU}}=1.0$

HEX 2
$\mathrm{t}_{\mathrm{CPU}}=4.7$

HEX -1
$\mathrm{t}_{\mathrm{CPU}}=4.7$
HEX -2 (same pattern)
$t_{\mathrm{CPU}}=7.6$
element size: $\mathbf{7 m m}$

HEX 24
$\mathrm{t}_{\mathrm{CPU}}=5.2$
3.5 mm mesh:
3.5 mm mesh:
$\mathrm{t}_{\mathrm{CPU}}=32.0$

Tube crash

thickness: $\mathbf{2 ~ m m ~ (2 ~ e l e m e n t s) ~}$
element size: 3.5 mm
element size: 7 mm

Different folding sequences

HEX 23
HEX 24
$\mathrm{t}_{\mathrm{cPu}}=3.6$
$\mathrm{t}_{\mathrm{CPU}}=5.2$
3.5 mm mesh: 3.5 mm mesh:
$\mathrm{t}_{\mathrm{CPU}}=32.0 \quad \mathrm{t}_{\text {cPu }}=43.2$

Tube crash

Tube crash

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element: default element type

EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8-node element with nodal rotations

EQ. 164 or 5 point 10-noded tetrahedron
EQ. 17 10-noded composite tetrahedron
EQ. 23 20-node solid formulation
EQ. 24 27-noded, fully integrated S/R quadratic solid element
EQ. 1151 point pentahedron element with hourglass control

Linear tetrahedral elements in LS-DYNA

ELFORM = 10

- 1-point constant stress
- Volumetric locking - stiff behavior
- Only applicable for foams with $v=0$ (not recommended in general)
- Often used for transitions in meshes *CONTROL_SOLID, ESORT=1

ELFORM = 13

- 1-point constant stress with nodal pressure averaging to alleviate volumetric locking
- Better performance than ELFORM=10 if Poisson's ratio $v>0$ (metals, rubber, ...)
- Supported materials for explicit *MAT_001, 003, 006, 007, 015, 024, 027, 077, 081, 082, 091, 092, 098, 103, 106, 120, 123, 124, 128, 129, 181, 183, 187, 224, 225, 244
- Implicit: all materials supported

Linear tetrahedra elements in LS-DYNA

Theoretical background

Bonet J, Burton, AJ: A simple average nodal pressure tetrahedral element for incompressible dynamic explicit applications. Comm. Num. Meth. Engrg. 14: 437-449, 1998
"(..) the element prevents volumetric locking by defining nodal volumes and evaluating average nodal pressures in terms of these volumes (...)"
"(...) it can be used in explicit dynamic applications involving (nearly) incompressible material behavior (e.g. rubber, ductile elastoplastic metals) (...)"

Speed penalty of max. 25\% compared to TET\#10

TET 13 = TET 10 + averaging nodal pressures
= TET 10 - volumetric locking

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element: default element type

EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8-node element with nodal rotations

EQ. $4 \quad$ S/R quadratic tetrahedron element with nodal rotations
EQ. 101 point tetrahedron
EQ. $13 \quad 1$ point nodal pressure tetrahedron

Higher order tetrahedral elements

EQ. 164 or 5 point 10-noded tetrahedron
|EQ. 17 10-noded composite tetrahedron
EQ. 23 20-node solid formulation
EQ. 24 27-noded, fully integrated S/R quadratic solid element
EQ. 1151 point pentahedron element with hourglass control

Higher order tetrahedral elements

```
ELFORM = 16
```


- 4(5) point 10-noded tetrahedron
- Good accuracy for moderate strains
- High cpu cost
- Observe the node numbering
- Use *CONTACT_AUTOMATIC_... with PID
- Easy conversion of 4-noded tets via
*ELEMENT_SOLID_TET4TOTET10
- Midside nodes: *CONTROL_OUTPUT, TET10=1

ELFORM = 17

- 4(5) point 10-noded "composite" tetrahedron (12 linear sub-tetrahedrons)
- Properties similar to type 16
- Correct external force distribution

```
Automatic node generation
*ELEMENT_SOLID_TET4TOTET10
Similar to *ELEMENT_SOLID_H8TOH2O/_H8TOH27
```


Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element: default element type

EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8-node element with nodal rotations

EQ. 152 point pentahedron element
EQ. 164 or 5 point 10-noded tetrahedron
EQ. 17 10-noded composite tetrahedron
EQ. 23 20-node solid formulation
EQ. 24 27-noded, fully integrated S/R quadratic solid element
EQ. 1151 point pentahedron element with hourglass control

Quadratic tetrahedron with nodal rotations

ELFORM = 4

- Quadratic 4 node tetrahedron with nodal rotations, i.e. 6 DOF per node
- Derived from 10 node tetrahedron
- S/R integration (5-point)
- Well suited for connections to shells
- Good accuracy for small strains
- Tendency to volumetric locking

10 nodes with 30 DOF

Teng, H: Solid elements with Rotational Degree of Freedom for Grand Rotation Problems in LSDYNA, $11^{\text {th }}$ International LS-DYNA Users Conference, 2010

4 nodes with 24 DOF

Pawlak, TP and Yunus, SM: Solid elements with rotational degrees of freedom: Part 2 - Tetrahedron elements, IJNME 1991

Examples part 2

Plastic bending

- Explicit plastic 3 point bending (prescribed motion)
- plate of dimensions $300 \times 60 \times 5 \mathrm{~mm}^{3}$
- *MAT_024 (aluminum)


```
Free tetrahedral meshing
(no split of hexaedehedrals
    into tetrahedrals)
```


Plastic bending

Results

- TET 4 better than TET 10 but still too stiff
- Good convergence with types 13, 16, 17
- Almost no difference with 4- or 5-pointintegration

Plastic bending
CPU timing in minutes

0.0

"Fine mesh" (24,811 elements)

Coarser mesh sufficient with quadratic elements

"Coarse mesh" (3,783 elements)

Notched steel specimen

*MAT_PIECEWISE_LINEAR_PLASTICITY

$E=206.9 \mathrm{kN} / \mathrm{mm}^{2}$
$v=0.29$
$\sigma_{y}=0.45 \mathrm{kN} / \mathrm{mm}^{2}$
$E_{t}=0.02 \mathrm{kN} / \mathrm{mm}^{2}$ (nearly ideal plastic)

Isochoric plastic flow

Hexahedral mesh

Tetrahedral mesh

Load-displacement curve should show a limit force

Notched steel specimen Hexahedral results

Notched steel specimen

Tetrahedral results

von Mises stresses
$0-480 \mathrm{~N} / \mathrm{mm}^{2}$

Rubber block compression

Sphere pushed into

 rubber block
*MAT_MOONEY-RIVLIN_RUBBER

$A=4.0 \mathrm{~N} / \mathrm{mm}^{2}$
$B=2.4 \mathrm{~N} / \mathrm{mm}^{2}$
$v=0.499$
$\rho=1.5 \mathrm{E}-06 \mathrm{~kg} / \mathrm{mm}^{3}$ nearly incompressible material

Rubber block compression

Results

HEX 1
(IHQ 6)

TET 10

HEX 1
HEX 1
(IHQ 6)

TET 10

No alleviation of volumetric locking

HEX 2

HEX 23

$$
\left(0-1.2 \mathrm{~N} / \mathrm{mm}^{2}\right)
$$

von Mises stress

Taylor bar impact

*MAT_PIECEWISE_LINEAR_PLASTICITY
$\rho=8930 \mathrm{~kg} / \mathrm{m}^{3}$,
$E=117 \mathrm{kN} / \mathrm{mm}^{2}$,
$v=0.35$,
$\sigma_{y}=0.4 \mathrm{kN} / \mathrm{mm}^{2}$,
$E_{t}=0.1 \mathrm{kN} / \mathrm{mm}^{2}$

$$
v_{0}=227 \mathrm{~m} / \mathrm{s}
$$

Wilkins, ML et al
"Impact of cylinders on
a rigid boundary"
Journal of Applied Physics, 1973

Final deformation
Tetrahedrons

Hexahedrons

Taylor bar impact

13.8 mm (QM=0.01)

Taylor bar impact

Deformation

HEX \#3

checkerboard mode

Structural component

von Mises stresses

TET \#13

TET \#10

Structural component

Structural component

Load-displacement curve

Structural component

Maximum principal stress
$-50.0-450.0 \mathrm{~N} / \mathrm{mm}^{2}$

Overview

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ.-2 Fully integrated S/R solid intended for elements with poor aspect ratio, accurate formulation

EQ.-1 Fully integrated S/R solid intended for elements with poor aspect ratio, efficient formulation

EQ. 1 Constant stress solid element: default element type

EQ. 2 Fully integrated S/R solid.
EQ. 3 Fully integrated quadratic 8-node element with nodal rotations

EQ. $13 \quad 1$ point nodal pressure tetrahedron
「ニ- $15 \quad 2$ point pentahediron element
iEQ. 15 ।

Pentahedron element
d tetrahedron
EQ. 17 10-noded composite tetrahedron
EQ. 23 20-node solid formulation
EQ. 24 27-noded, fully integrated S/R

Pentahedra elements in LS-DYNA

ELFORM = 15

ELFORM = 115

- 2-point selective reduced integration
- needs hourglass stabilization for twist mode (recent improvement \rightarrow next official versions)
- often used as transition element (ESORT=1)
- 1-point reduced integration
- needs hourglass stabilization (analogue to hexahedron element type 1 with Flanagan-Belytschko hourglass formulation)

Time step control

Critical time step

$$
\Delta t_{e}=\frac{L_{e}}{Q+\left(Q^{2}+c^{2}\right)^{1 / 2}} \approx \frac{L_{e}}{c}
$$

$L_{e}=$ main information from element formulation

Adiabatic sound speed

$$
c=\sqrt{\frac{E(1-v)}{(1+v)(1-2 v) \rho}}=\sqrt{\frac{K+\frac{4}{3} G}{\rho}}
$$

Characteristic element length

ELFORM =4: $\quad L_{e}=0.85 h_{\text {min }}$

$$
\begin{aligned}
\text { ELFORM = } 10 / 13: & L_{e}=h_{\min } \\
\text { ELFORM = 16: } & L_{e}=0.3889 h_{\min } \\
\text { ELFORM = 17: } & L_{e}=V / A_{\max }
\end{aligned}
$$

ELFORM $=15: L_{e}=1 / \sqrt{B_{i j} B_{i j}}$

Time step control

Example 1
Time step size for same volume

Example 2

Time step size for same edge length

Conclusions and remarks

- Use hexahedron elements if possible (regular solid bodies)
- ELFORM = 1 with $\mathrm{IHQ}=6$ or ELFORM $=2$, 3
- ELFORM = -1 or -2 for „flat" hexas
- Quadratic ELFORM 23, 24 show good coarse mesh accuracy
- But for large strains linear elements in general more robust

- Pentahedrons $15 / 115$ should be avoided or only be used as transition elements, pure tetrahedral mesh is better choice

General ■ In implicit analysis: costly element formulations may be used remarks not as significant for speed as in explicit analysis

- Always set ESORT = 1 on *CONTROL_SOLID

Conclusions and remarks

- For complex solid structures, use tet type 4, 13, 16, or 17
- ELFORM = 16/17 are the most accurate tets, but not suited for large strains
- ELFORM = 13 needs finer mesh, well suited even for large strains (check if your material is supported)
- For metals or plastics (moderate strains), use tet type 4, 13, 16, or 17
- For rubber materials (incompressible, large strains) use tet type 13
- For bulk forming problems (large strains!), use ELFORM = 13 and r-adaptivity

General ■ In implicit analysis: costly element formulations may be used remarks not as significant for speed as in explicit analysis

- Always set ESORT = 1 on *CONTROL_SOLID

Conclusions and remarks

*SECTION_SOLID, parameter ELFORM

Further quadratic and cubic element types available in more recent versions of LS-DYNA

www.dynalook.com

Teng, H: "Recent Advances on Higher-Order 27-node Hexahedral Element in LS-DYNA", 14 ${ }^{\text {th }}$ International LS-DYNA Users Conference 2016.

Borrvall, T, Benson, D, Teng, H: "An Implicit Study of High Order Elements in LS-DYNA", $11^{\text {th }}$ European LS-DYNA Conference 2017.

