German LS-DYNA Forum 2018

Updated fatigue analysis with LS-DYNA®

Yun Huang, Zhe Cui

Livermore Software Technology Corporation

17th October, 2018

Outline

- 1) Introduction
- 2) S-N curve and E-N curve
- 3) Random vibration fatigue analysis
- 4) SSD fatigue analysis
- 5) Time domain fatigue analysis
- 6) Conclusion and future work

1) Introduction

What is fatigue?

- Fatigue is a process in which damage accumulates due to the repetitive application of loads that may be well below the yield point.
- □ Fatigue is a complex process involving many steps but it can be broken down into initiation and propagation of fatigue cracks.
- It is estimated that fatigue failures are responsible for 90% of all metallic failures.
- For many years, fatigue has been a significant and challenging problem for engineers, especially for those who design structures such as aircrafts, railroad vehicles, automotives, bridges, pressure vessels, and cranes.

How to run fatigue analysis?

- □ Fatigue analysis can be performed in time domain and frequency domain.
- Two frequency domain approaches based on <u>random vibration theory</u> <u>and steady state vibration (SSD) theory</u> have been implemented in LS-DYNA for fatigue and durability analysis.
- Recently we implemented time domain fatigue, including one <u>based on</u> <u>stress</u> and the other <u>based on strain.</u>

List of LS-DYNA keywords for fatigue analysis

*FATIGUE *FATIGUE_MEAN_STRESS_CORRECTION *FATIGUE_MULTIAXIAL *FATIUGE_SUMMATION *FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE *FREQUENCY_DOMAIN_SSD_FATIGUE *DATABASE_FREQUENCY_BINARY_D3FTG *INITIAL_STRESS_SOLID (SHELL, TSHELL, BEAM) *INITIAL_FATIGUE_DAMAGE_RATIO

*MAT_ADD_FATIGUE

2) S-N curve and E-N curve

S-N CUIVE (high cycle, low stress)

*MAT_ADD_FATIGUE

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCID	LTYPE	А	В	STHRES	SNLIMT	SNTYPE
Туре	Ι	Ι	Ι	F	F	F	Ι	Ι
Default	none	-1	0	0.0	0.0	none	0	0

- By ***DEFINE_CURVE**
- By equation

 $N \cdot S^m = a$

 $\log(S) = a - b \cdot \log(N)$

N: number of cycles for fatigue failure S: stress

Source of information: http://www.efunda.com

• Fatigue life of stress below fatigue threshold

SNLIMT Fatigue life for stress lower than the lowest stress on S-N curve. EQ.0: use the life at the last point on S-N curve EQ.1: extrapolation from the last two points on S-N curve EQ.2: infinity.

Multi S-N curves (for multiple mean stress)

SN curves with different

*MAT_ADD_FATIGUE

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCID	LTYPE	А	В	STHRES	SNLIMT	SNTYPE
Туре	Ι	Ι	Ι	F	F	F	Ι	Ι
Default	none	-1	0	0.0	0.0	none	0	0

*DEFINE_TABLE

7

E-N curve (low cycle, high stress)

*MAT_ADD_FATIGUE_EN

Card 1	1	2	3	4	5	6	7	8
Variable	MID	KP	NP	SIGMAP	EPSP	В	С	
Туре	Ι	F	F	F	F	F	F	
Default	none	none	none	none	none	none	none	

Cyclic stress strain curve

Local strain-life relationship

3) Random vibration fatigue

Introduction

- Structures and mechanical components are frequently subjected to the oscillating loads which are random in nature. Random vibration theory has been introduced for more than three decades to deal with all kinds of random vibration behavior.
- The stress PSD represents the frequency domain approach input into the fatigue. This is a scalar function that describes how the power of the time signal is distributed among frequencies.

Overview of random fatigue feature

- Keyword *FREQUENCY_DOMAIN_RANDOM_VIBRATION_*FATIGUE*
- Calculate fatigue life of structures under random vibration
- Based on S-N fatigue curve
- Based on probability distribution & Miner's Rule of Cumulative Damage Ratio

- Schemes:
 - ✓ Steinberg's Three-band technique considering the number of stress cycles at the 1σ , 2σ , and 3σ levels.
 - \checkmark Dirlik method based on the 4 Moments of PSD.
 - \checkmark Narrow band method
 - \checkmark Wirsching method

<u>Keywords</u>

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

Additional card for FATIGUE keyword options.

Card 6	1	2	3	4	5	6	7	8
Variable	MFTG	NFTG	SNTYPE	TEXPOS	STRSF	INFTG		
Туре	Ι	Ι	Ι	F	F	Ι		
Default	0	1	0	0.0	0.0	0		

Repeat Card 7 "NFTG" times if multiple S-N fatigue curves are present.

Card 7	1	2	3	4	5	6	7	8
Variable	PID	LCID	PTYPE	LTYPE	А	В	STHRES	SNLIMT
Туре	Ι	Ι	Ι	Ι	F	F	F	Ι
Default			0	0			0.	0

*MAT_ADD_FATIGUE (used if NFTG=-999)

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCID	LTYPE	А	В	STHRES	SNLIMT	SNTYPE
Туре	Ι	Ι	Ι	F	F	F	Ι	Ι
Default	none		0	0.0	0.0	none	0	0

EZ set up by "Application"

Analysis methods

- Steinberg's Three band technique Assuming no stress cycle beyond 3 or values.
- Dirlik method

Dirlik, 1985, empirical closed form solution, using the Monte Carlo technique; widely applicable

Narrow band method

Bendat, 1964, applicable for narrow band fatigue only

- Wirsching method
- Chaudhury and Dover method
- Tunna method
- Hancock method
- Lalanne method

The Winsching, Chaudhury, Tunna and Hancock methods are based on empirical correction factors for the narrow band method, and are applicable to different industries.

Result file: d3ftg (accessible to LS-PrePost)

The Safe/Failed zone function can help user to locate the fatigue failed zone quickly.

The log10 scale can be helpful to show the fringe of expected fatigue life, which may have a huge span of values.

Mean stress correction

Completely reversed tests

Mean stress correction equations

*FATIGUE_MEAN_STRESS_CORRECTION

Card 1	1	2
Variable	METHOD	
Туре	Ι	

Card 2	1	2
Variable	MID	SIGMA
Туре	Ι	F

METHOD

EQ.0: Goodman equation

EQ.1: Soderberg equation

EQ.2: Gerber equation

EQ.3: Goodman tension only

EQ.4: Gerber tension only

EQ.11: Morrow equation

EQ.12: Smith-Watson-Topper equation

$$S = \frac{\sigma_a}{1 - \sigma_m / \sigma_u}$$

Soderberg

$$S = \frac{\sigma_a}{1 - \sigma_m / \sigma_y}$$

Gerber

Fatigue analysis with beam elements

A beam example under PSD loading Contours of Cumulative damage ratio min=4.20754e-06, at elem# 148 max=0.960095, at elem# 101

 9.601e-01
 8.641e-01

 8.641e-01
 7.681e-01

 6.721e-01
 5.761e-01

 3.840e-01
 3.840e-01

 2.880e-01
 9.601e-02

 9.601e-02
 4.208e-06

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE *DATABASE_EXTENT_BINARY

\$#	neiph	neips	maxint	strflg	sigflg	epsflg	rltflg	engflg
	0	0	3	Ō	1	1	1	1
\$#	cmpfl	ieverp	beamip	dcomp	shge	stssz	n3thdt	ialemat
	0	0			1	1	2	1
\$#	nintsld	pkp_sen	scip	unused	msscl	therm	intout	nodout
	0	0	1.0000	0	0	0	STRESS	STRESS

4) SSD fatigue

Introduction

*FREQUENCY_DOMAIN_SSD_FATIGUE

- Calculate fatigue life of structures under steady state vibration (e.g. sine sweep)
- Based on S-N fatigue curve
- Based on Miner's Rule of Cumulative Damage Ratio
- Rainflow counting algorithm for each frequency for one period

$$R = \sum_{i}^{n_i} \frac{n_i}{N_i}$$

<u>Keyword</u>

*FREQUENCY_DOMAIN_SSD_FATIGUE

Card 3	1	2	3	4	5	6	7	8
Variable					STRTYP	NOUT	NOTYP	NOVA
Туре					Ι	Ι	Ι	Ι
Default					0	0	0	0
Card 4	1	2	3	4	5	6	7	8
Variable	NID	NTYP	DOF	VAD	LC1	LC2	LC3	VID
Туре	Ι	Ι	F	F	Ι	Ι	Ι	Ι
Default	none	0	none	none	none	none	0	0

VARIABLE

DESCRIPTION

STRTYP Stress type used in fatigue analysis

- = 0 Von Mises stress
- = 1 Maximum principal stress
- = 2 Maximum shear stress
- LC3 Load Curve ID defining load duration for each frequency. This parameter is optional and is only needed for simulating sine sweep vibration

Example of SSD fatigue

Loading condition

SN fatigue curve

5) Time domain fatigue

<u>Keyword</u>

*FATIGUE_OPTION

Card 1	1	2	3	4	5	6	7	8
Variable	SSID	SSTYPE						
Туре	Ι	I						
Card 2	1	2	3	4	5	6	7	8
Variable	DT							
Туре	Ι							
Card 3	1	2	3	4	5	6	7	8
Variable	STRES	INDEX	RESTRT	TEXPOS				
Туре	Ι	Ι	Ι	F				
VARIABLE		DESCRIPTI	ION	VARIA	ABLE	DES	CRIPTION	
VARIABLE		DESCRIPTI	<u>ION</u>		ABLE	DES	CRIPTION	
VARIABLE STRES	- Type	DESCRIPTI	ION nalysis variat	VARIA	<u>ABLE</u> EX	DES Stress / strain	CRIPTION	
VARIABLE STRES	Type EQ.0	DESCRIPTI of fatigue ar : Stress (defa	ION nalysis variab ault)	VARIA	ABLE	DES Stress / strain EQ.0: Von-M	CRIPTION n index: lises stress/ s	train
VARIABLE STRES	Type EQ.0 EQ.1	DESCRIPTI of fatigue ar : Stress (defa : Strain	ION nalysis variab ault)	VARIA	ABLEEX	DES Stress / strain EQ.0: Von-M EQ.1: Maxin	CRIPTION n index: fises stress/ s num principa	train l stress/strain
VARIABLE STRES	Type EQ.0 EQ.1	DESCRIPTI of fatigue an : Stress (defa : Strain	ION nalysis variab ault)	VARIA	ABLE	DES Stress / strain EQ.0: Von-M EQ.1: Maxin EQ.2: Maxin	CRIPTION n index: fises stress/ s num principa num shear str	train l stress/strain ess/strain
VARIABLE STRES	Type EQ.0 EQ.1	DESCRIPTI of fatigue ar : Stress (defa : Strain	ION nalysis variab ault)	<u>VARI</u>	ABLEEX	DES Stress / strain EQ.0: Von-M EQ.1: Maxin EQ.2: Maxin EQ1: xx-str	CRIPTION n index: fises stress/ s num principa num shear str ress/strain	train l stress/strain ess/strain
VARIABLE STRES	Type EQ.0 EQ.1	DESCRIPTI of fatigue ar : Stress (defa : Strain	ION nalysis variat ault)	<u>VARI</u>	ABLE	DES Stress / strain EQ.0: Von-M EQ.1: Maxim EQ.2: Maxim EQ1: xx-str EQ2: yy-str	CRIPTION n index: lises stress/ s num principa num shear str ress/strain ress/strain	train l stress/strain ess/strain
VARIABLE STRES	Type EQ.0 EQ.1 OPT ELO	DESCRIPTI of fatigue an : Stress (defa : Strain ION: UT	ION nalysis variab ault)	<u>VARI</u>	ABLE EX	DES Stress / strain EQ.0: Von-M EQ.1: Maxim EQ.2: Maxim EQ1: xx-str EQ2: yy-str EQ3: zz-str	CRIPTION n index: lises stress/ s num principa num shear str ress/strain ress/strain ress/strain	train l stress/strain ess/strain
VARIABLE	Type EQ.0 EQ.1 OPT ELOI	DESCRIPTI of fatigue ar : Stress (defa : Strain /ON: UT	ION nalysis variab ault)	<u>VARI</u>	ABLE EX	DES Stress / strain EQ.0: Von-M EQ.1: Maxim EQ.2: Maxim EQ1: xx-str EQ2: yy-str EQ3: zz-str EQ4: xy-str	CRIPTION n index: fises stress/ s num principa num shear str ress/strain ress/strain ress/strain ress/strain	train l stress/strain ess/strain
VARIABLE	Type EQ.0 EQ.1 OPT ELO	DESCRIPTI of fatigue an : Stress (defa : Strain /ON: UT	ION nalysis variab ault)	<u>VARI</u>	ABLE	DES Stress / strain EQ.0: Von-M EQ.1: Maxim EQ.2: Maxim EQ1: xx-str EQ2: yy-str EQ3: zz-str EQ3: zz-str EQ4: xy-str EQ5: yz-str	CRIPTION n index: lises stress/ s num principa num shear str ress/strain ress/strain ress/strain ress/strain ress/strain	train l stress/strain ess/strain

Stress based fatigue analysis

*LOAD_THERMAL_LOAD_CURVE *MAT_ELASTIC_PLASTIC_THERMAL

Cumulative damage ratio

2.843e-03

2.582e-03

2.321e-03

2.060e-03

1.799e-03

1.538e-03

1.276e-03

1.015e-03

7.540e-04

4.929e-04

2.317e-04

Strain based fatigue analysis

- This example studies the fatigue life of a metal bracket model, under cyclic nodal force excitation
- The location for maximum cumulative damage ratio, matches the location for maximum strain

Initial damage ratio in fatigue

• Defined by ***INITIAL_FATIGUE_DAMAGE_RATIO**

- Initial damage ratio can come from past fatigue analysis (d3ftg)
- Initial damage ratio can come from transient preload (d3plot), e.g.
 *MAT_ADD_EROSION, *MAT_ADD_DAMAGE_GISSMO, etc.
- Summed up by ***FATIGUE_SUMMATION**

Damage from transient preload case (d3plot)

Damage ratio from fatigue load

Cumulative damage ratio from transient preload + fatigue load

Multi-axial fatigue analysis

Stress / strain state is always three dimensional

- A scalar index (e.g. von-mises stress, max principal stress) can be used
- Fatigue damage is computed on multiple planes and the max value is picked
- A critical plane is located and fatigue analysis is performed on the critical plane

6) Conclusion and future work

- 1. A bunch of time domain and frequency domain fatigue analysis methods have been implemented to LS-DYNA.
- 2. Validated by benchmark examples, users' problems ...
- 3. Advantages:
 - ✓ A wide selection of stress / strain solvers (nonlinear, thermal, multiphysics, fluid-structure interaction, EM, CFD, explicit / implicit, etc.)
 - \checkmark Integration of vibration and fatigue solvers in one code.
 - ✓ Manufacturing effects (e.g. residual stress) can be considered
 - ✓ Run fatigue analysis on part, set of parts, set of elements.
 - ✓ Post-processing: analysis results well supported by LS-PrePost
- 4. Future work:
 - ✓ Integration with LS-OPT / LS-TASC for structure's multi-disciplinary optimization (MDO).
 - ✓ Progressive fatigue computation and evolution of damage
 - \checkmark More options for critical plane identification.