# WORKSHOP Introduction to material characterization

Martin Helbig, David Koch

DYNAmore GmbH, Germany

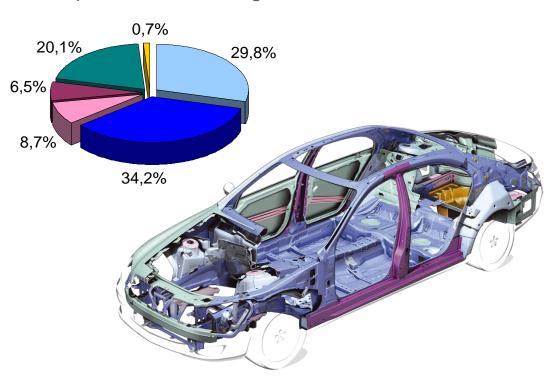
15th German LS-DYNA Forum 2018

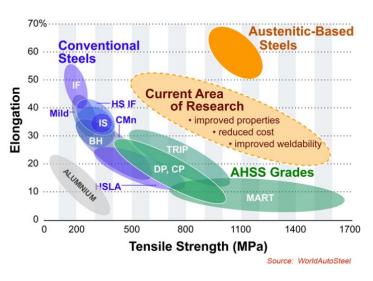
Bamberg, October 15, 2018



### **Motivation**

Example of material usage in a modern car



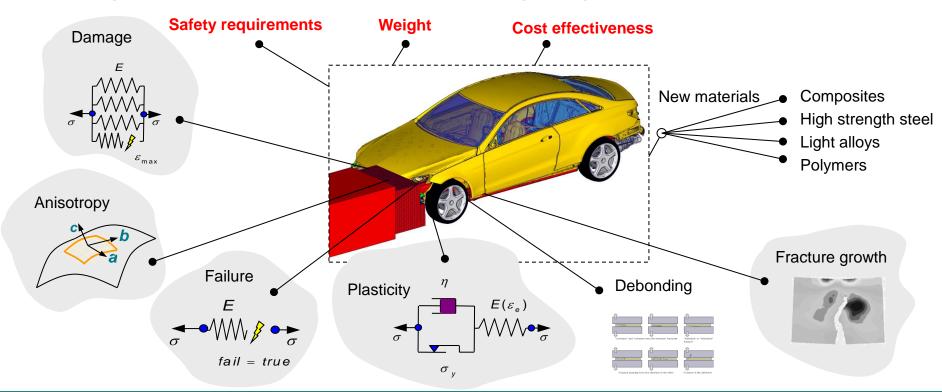


- Deep drawing steels
  - High strength steels
    - Very high strength steels
  - Ultra high strength steels
- Aluminum
- Polymers



### **Motivation**

Challenges in the automotive industry for efficient lightweight structures





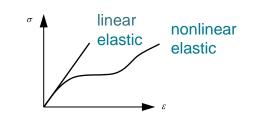
### Rheological models

# Stress-strain relationship

# **Elasticity**

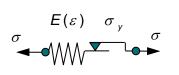
- Linear / nonlinear stress-strain relationship
- Loading and unloading paths identical
- Stress is a function of the strain
- Reversible deformations
- Elastic straining is non-isochoric for metals

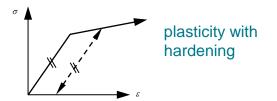
# 



### **Plasticity**

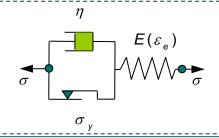
- Elastic behavior until yielding
- Irreversible deformations
- Hardening/softening behavior possible
- Isochoric for metals





# **Viscoplasticity**

- Stress states outside the yield surface activate viscoplastic response
- Relaxation of overstress over time
- Limiting cases are elasticity and plasticity

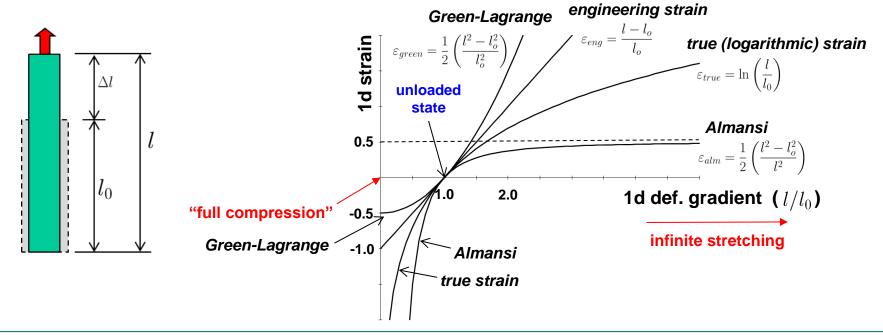






### **Strain measures**

- For small deformations the strain measures is indifferent, all deliver the same result
- For large or finite deformations the strain measure depends on the type of problem, mathematical convenience, etc.



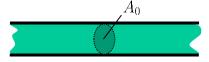


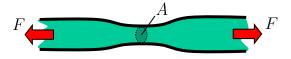
### Stress measures

#### One-dimensional case

• in one dimension, the engineering and true stress measures are the most commonly used in practical engineering:

$$\sigma_{eng} = \frac{F}{A_o}$$
  $\sigma_{true} = \frac{F}{A}$ 





assuming an isochoric deformation (i.e., constant volume), the true stress may be expressed as:

$$\sigma_{true} = \frac{F}{A} = \frac{F}{A_0} \frac{A_0}{A} \stackrel{Al=A_0l_0}{=} \frac{F}{A_0} \frac{l}{l_0} = \sigma_{eng} (1 + \varepsilon_{eng})$$

 in the three dimensional case, the above stress measures are generalized to tensorial quantities of second order, where other stress tensors are also relevant, e.g., the second Piola-Kirchhoff, the Kirchhoff stress tensor, etc.

### **Stress measures**

Some useful relations regarding the stress tensor

The true stress tensor is symmetric and can be split in two parts

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{22} & \sigma_{23} \\ \sigma_{33} \end{bmatrix} = \mathbf{s} + \frac{1}{3} \mathrm{tr}(\boldsymbol{\sigma}) \, \mathbf{I} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{22} & s_{23} \\ s_{33} \end{bmatrix} - p \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Change in shape, but not in volume but not in shape but not in shape hut not

The principal stress tensor and its invariants

$$oldsymbol{\sigma} = egin{bmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & \sigma_3 \end{bmatrix} \qquad egin{array}{l} I_1 = \sigma_1 + \sigma_2 + \sigma_3 \ I_2 = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3 \ I_3 = \sigma_1 \sigma_2 \sigma_3 \end{array}$$

$$J_1 = s_1 + s_2 + s_3 = 0$$

$$J_2 = \frac{1}{6} \left[ (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]$$

$$J_3 = s_1 s_2 s_3 = \frac{2}{27} I_1^3 - \frac{1}{3} I_1 I_2 + I_3$$

The equivalent or von Mises stress is defined as

$$\sigma_{eq} = \sqrt{3J_2} = \sqrt{\frac{1}{2}} \left[ (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]$$



### **Constitutive law**

The relation between stress and strain

- the constitutive law defines the response of a given material to external loads
- within the framework of continuum mechanics, the constitutive law is the relation between the strains and stresses in a material point, which in the general three-dimensional case can be expressed as

$$oldsymbol{\sigma} = \mathbb{D} : oldsymbol{arepsilon} \qquad \qquad oldsymbol{\phi} = egin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \ \sigma_{21} & \sigma_{22} & \sigma_{23} \ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}, \; oldsymbol{arepsilon} = egin{bmatrix} arepsilon_{11} & arepsilon_{12} & arepsilon_{13} \ arepsilon_{21} & arepsilon_{22} & arepsilon_{23} \ arepsilon_{31} & arepsilon_{32} & arepsilon_{33} \end{bmatrix}$$

Constitutive operator

 for a uniaxial stress state and an elastic material with Young's modulus E, the equation above can be reduced to

$$\sigma = E \varepsilon^e$$

- for most materials, the constitutive law is nonlinear and a function of other variables such as plastic strain, strain rate, temperature, etc.
- when you define the material parameters (e.g., hardening curve) for a material model in LS-DYNA, you are actually indirectly prescribing the constitutive law



## Material modeling in LS-DYNA

A selection of LS-DYNA material models based on von Mises plasticity

- \*MAT\_PLASTIC\_KINEMATIC (#003)
   Von Mises based model with bilinear isotropic and kinematic hardening
- \*MAT\_PIECEWISE\_LINEAR\_PLASTICITY (#024)

  Von Mises based elasto-plastic material model with isotropic hardening and strain rate effects;

  One of LS-DYNA's most used material models



# Simple plasticity model

\*MAT\_PLASTIC\_KINEMATIC (\*MAT\_003)



### \*MAT 003

#### \*MAT PLASTIC KINEMATIC

This is a bilinear elasto-plastic model which accounts for kinematic, isotropic or mixed hardening. Strain rate dependence can be considered and element deletion can be activated. It is a very simple and very fast material model that can be used to model plasticity in a simplified way.

| *MAT        | _PLASTIC | C_KINEMATIC  |        |      |       |      |           |
|-------------|----------|--------------|--------|------|-------|------|-----------|
| \$          | MID      | RO           | E      | PR   | SIGY  | ETAN | BETA      |
| ,<br> <br>  | 5        | 7.86E-6      | 210.0  | 0.33 | 310.0 | 50.0 | 0.5       |
| \$          | SRC      | SRP          | FS     | VP   |       |      |           |
| !<br>!<br>! | 5.0      |              |        |      |       |      | P         |
|             |          |              |        |      |       |      | 0.5<br>P' |
| • SI        | GY:      | Yield stress | 8      |      |       |      | *         |
| ■ E         | TAN:     | Tangent mo   | odulus |      |       |      | \ \       |

ETAN: Tangent modulus

BETA: Hardening parameter (isotropic/kinematic hardening)

SRC, SRP: Strain rate parameter C and P for *Cowper Symonds* strain rate model

Failure strain for eroding elements

Formulation for rate effects



# Isotropic plasticity model

\*MAT\_PIECEWISE\_LINEAR\_PLASTICITY (\*MAT\_024)



# \*MAT\_024

### Keyword definition

| \$<br>MID  | RO       | E     | PR   | SIGY | ETAN | FAIL | TDEL |
|------------|----------|-------|------|------|------|------|------|
| 1          | 7.85E-06 | 210.0 | 0.3  |      | i    |      |      |
| \$<br>С    | P        | LCSS  | LCSR | VP   |      |      |      |
|            |          | 100   |      | 1    |      |      |      |
| \$<br>EPS1 | EPS2     | EPS3  | EPS4 | EPS5 | EPS6 | EPS7 | EPS8 |
| \$<br>ES1  | ES2      | ES3   | ES4  | ES5  | ES6  | ES7  | ES8  |

MID: Material identification

RO: Density

E: Young's modulus

PR: Elastic Poisson's ratio

SIGY: Yield stress (in case of linear hardening)

ETAN: Hardening modulus (in case of linear hardening)



# \*MAT\_024

### Keyword definition

| *MAT | _PIECEW | ISE_LINEAR_ | PLASTICITY |      |      |      |      |      |
|------|---------|-------------|------------|------|------|------|------|------|
| \$   | MID     | RO          | E          | PR   | SIGY | ETAN | FAIL | TDEL |
|      | 1       | 7.85E-06    | 210.0      | 0.3  |      |      |      |      |
| \$   | С       | P           | LCSS       | LCSR | VP   |      |      |      |
|      |         |             | 100        |      | 1    |      |      |      |
| \$   | EPS1    | EPS2        | EPS3       | EPS4 | EPS5 | EPS6 | EPS7 | EPS8 |
|      |         |             |            |      |      |      |      |      |
| \$   | ES1     | ES2         | ES3        | ES4  | ES5  | ES6  | ES7  | ES8  |
|      |         |             |            |      |      |      |      |      |

- EPS1-EPS8: Effective plastic strain values (optional, supersedes SIGY and ETAN)
- ES1-ES8: Corresponding yield stress values to eps1-eps8

### \*MAT 024

### Keyword definition

| \$ | MID  | RO      | E     | PR   | SIGY | ETAN | FAIL | TDEL |
|----|------|---------|-------|------|------|------|------|------|
|    | 1 7  | .85E-06 | 210.0 | 0.3  |      | i    |      |      |
| 3  | С    | P       | LCSS  | LCSR | VP   | _    |      |      |
|    |      |         | 100   |      | 1    |      |      |      |
|    | EPS1 | EPS2    | EPS3  | EPS4 | EPS5 | EPS6 | EPS7 | EPS8 |
|    | ES1  | ES2     | ES3   | ES4  | ES5  | ES6  | ES7  | ES8  |

FAIL: Failure flag

■ TDEL: Minimum time step size for automatic element deletion

C, P: Strain rate parameters C and P for Cowper-Symonds strain rate model

LCSS: Load curve or table ID (yield curve, supersedes SIGY and ETAN)

LCSR: Load curve ID defining strain rate effects on yield stress

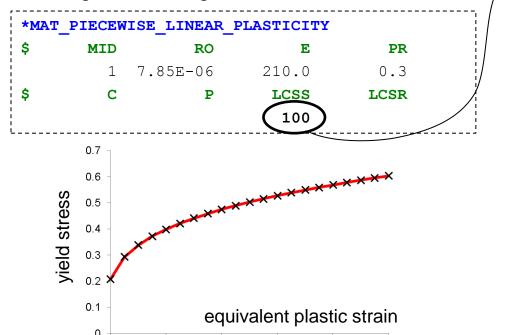
VP: Formulation for rate effects (1 for viscoplastic formulation)



### \*MAT\_024

Working with load curves

### Defining a hardening curve in \*MAT\_024







0.2

0.4

0.6

0.8

1.0

0.0

### \*MAT 024

### Some general remarks on \*MAT\_PIECEWISE\_LINEAR\_PLASTICITY

- "Work horse" in crash simulations
- Available for shells and solids
- Load curve based input makes this material model very flexible
- No kinematic hardening is considered (\*MAT\_225 is similar to \*MAT\_024, but allows the definition of kinematic hardening)
- Unless viscoplasticity (i.e., VP=1) is activated, the plasticity routine does not iterate (works very well in explicit, possibly problematic for large steps in implicit analysis)
  - Recommended for **implicit**:
    Set IACC=1 in \*CONTROL\_ACCURACY
    to make \*MAT\_024 always iterate

- The points between the rate-dependent curves are interpolated, either linearly or logarithmically
- The load curves are extrapolated in the direction of plastic strain by using the last slope of the curve
- No extrapolation is done in the direction of strain rate, i.e., the lowest (highest) curve defined is used if the current strain rate lies under (above) the input curves
- Negative and zero slopes are permitted but should generally be avoided

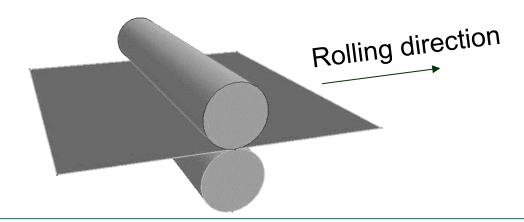


# **Anisotropic Plasticity**

### **Anisotropy of metal sheets**

Deformation induced anisotropy

- Metals may show anisotropic behavior due to previous loading and irreversible deformations (classical phenomenon of plasticity)
- Most prominent examples are forming and stamping processes where major and minor plastic strains develop in areas where high deformation occurs
- Also pre-stretching of steel parts (rods, tubes, etc.) leads to anisotropy
- Anisotropy is usually characterized by the Lankford parameter





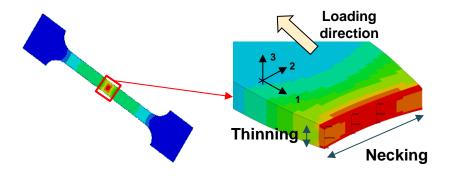
# **Anisotropy of metal sheets**

The Lankford parameter (R-value)

Definition

$$R = \frac{\dot{\varepsilon}_{22}^p}{\dot{\varepsilon}_{33}^p} = -\frac{\dot{\varepsilon}_{22}^p}{\dot{\varepsilon}_{11}^p + \dot{\varepsilon}_{22}^p}$$

Interpretation



$$R = 1.0$$
  $\rightarrow$   $\dot{\varepsilon}_{22}^p = \dot{\varepsilon}_{33}^p$ 

 $R=1.0 \rightarrow \dot{\varepsilon}_{22}^p = \dot{\varepsilon}_{33}^p \longrightarrow \text{Necking and thinning are comparable}$ 

$$R < 1.0$$
  $\rightarrow$ 

$$_{22}^{p}<\dot{arepsilon}_{33}^{p}\qquad --$$

R < 1.0  $\rightarrow$   $\dot{\varepsilon}_{22}^p < \dot{\varepsilon}_{33}^p$  — Less necking, **More thinning** 

$$\dot{\varepsilon}_{22}^p > \dot{\varepsilon}_{33}^p$$

R>1.0 ightarrow  $\dot{arepsilon}_{22}^p>\dot{arepsilon}_{33}^p$  — More necking, Less thinning

$$R_{00} = R_{45} = R_{90} = 1$$

Isotropic material

$$R_{00} = R_{45} = R_{90} \neq 1$$

 $R_{00} = R_{45} = R_{90} \neq 1$  — Anisotropic behavior in thickness direction

$$R_{00} \neq R_{45} \neq R_{90}$$

$$\longrightarrow$$

Anisotropic behavior in the plane and in thickness direction

# Material modeling in LS-DYNA

A selection of anisotropic elasto-plastic models

\*MAT\_3-PARAMETER\_BARLAT (#036)
 Anisotropic plasticity model based on Barlat and Lian (1989)



- \*MAT\_TRANSVERSELY\_ANISOTROPIC\_ELASTIC\_PLASTIC (#037)
   Elasto-plastic model for transverse anisotropy
- \*MAT\_ ORTHO\_ELASTIC\_PLASTIC (#108)
   Orthotropic material model in both elasticity and plasticity
- \*MAT\_HILL\_3R (#122)
  Hill's 1948 planar anisotropic material model with 3 R-values
- \*MAT\_BARLAT\_YLD2000 (#133)
   Elasto-plastic anisotropic plasticity model based on Barlat 2000
- \*MAT\_WTM\_STM (#135) Anisotropic elasto-plastic model based on the work of Aretz et. al (2004)
- \*MAT\_CORUS\_VEGTER (#136)
  Anisotropic yield surface construction based on the interpolation by second-order Bezier curves



# Anisotropic plasticity model

\*MAT\_3-PARAMETER\_BARLAT (\*MAT\_036)



# \*MAT\_036

# \*MAT\_3-PARAMETER\_BARLAT

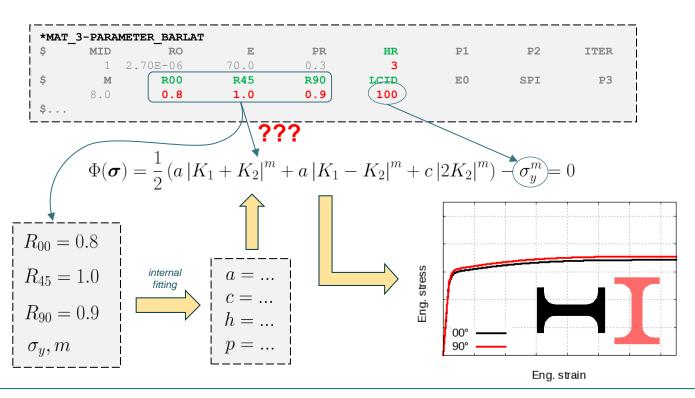
| *MA         | r_3-para | METER_BARLA | T      |        |           |     |         |      |        |
|-------------|----------|-------------|--------|--------|-----------|-----|---------|------|--------|
| <b>\$</b>   | MID      | RO          | E      | PR     | HR        | P1  | P2      | ITER | i      |
| i<br>I      | 1        | 7.85E-06    | 210.0  | 0.3    | 3         |     |         |      | <br>   |
| \$          | M        | R00/AB      | R45/CB | R90/HB | LCID      | E0  | SPI     | Р3   | <br>   |
| !           | 8.0      | 0.8         | 0.9    | 1.1    | 100       |     |         |      | ,<br>, |
| \$          | AOPT     | С           | P      | VLCID  |           | PB  | NLP/HTA | HTB  | i      |
| l<br>I      | 2        |             |        |        |           |     |         |      | <br>   |
| \$          |          |             |        | A1     | <b>A2</b> | A3  | HTC     | HTD  |        |
|             |          |             |        | 1.00   | 0.0       | 0.0 |         |      | i      |
| <b>;</b> \$ | V1       | V2          | v3     | D1     | D2        | D3  | BETA    |      | i      |
| I<br>I      |          |             |        | 0.0    | 0.0       | 0.0 |         |      | !<br>! |

| ■ MID: | Material identification | ■ P2: | Material parameter #2           | ■ HB:        | Parameter 'h' of yield function |
|--------|-------------------------|-------|---------------------------------|--------------|---------------------------------|
| RO:    | Density                 | ITER: | Iteration flag                  | ■ R00:       | R-Value in 0° degree direction  |
| ■ E:   | Young's modulus         | ■ M:  | Exponent for yield surface      | <b>R</b> 45: | R-Value in 45° degree direction |
| PR:    | Elastic Poisson's ratio | ■ AB: | Parameter 'a' of yield function | <b>R</b> 90: | R-Value in 90° degree direction |
| ■ HR:  | Hardening rule          | CB:   | Parameter 'c' of yield function | LCID:        | Load curve or table if HR=3     |
| ■ P1:  | Material parameter #1   |       |                                 |              |                                 |



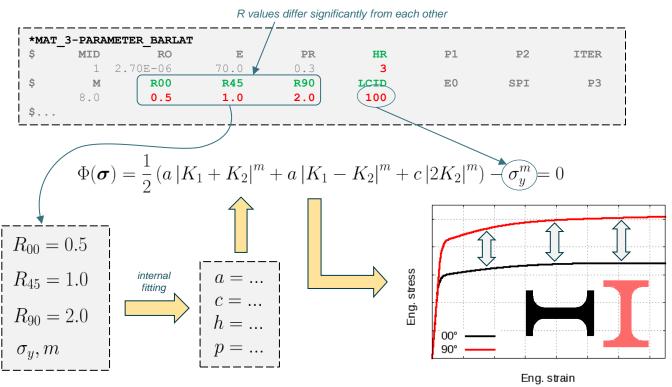
### \*MAT\_036 + HR=3

The original Barlat & Lian formulation (1989)



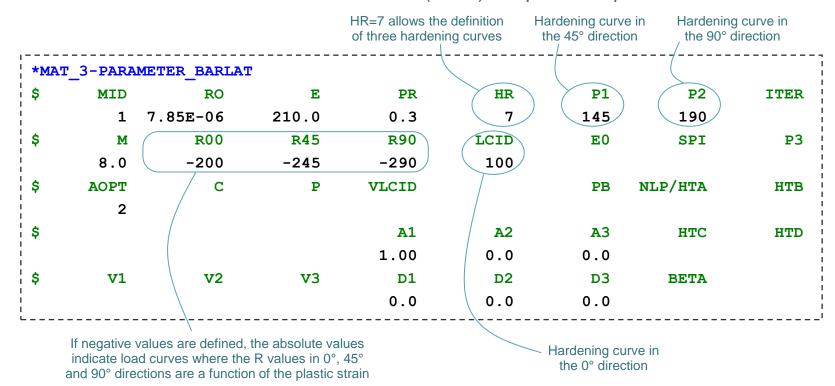
### \*MAT\_036 + HR=3

The original Barlat & Lian formulation (1989)



### \*MAT 036 + HR = 7

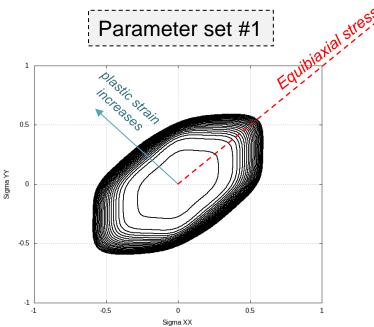
Extended formulation based on Fleischer et al. (2007) – input example

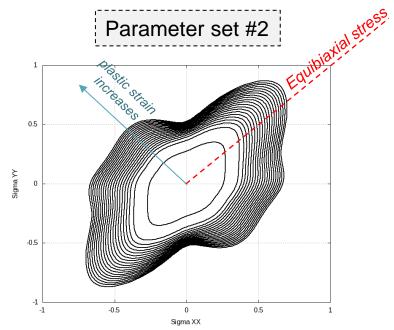


### \*MAT\_036 + HR=7

#### Yield surface

The extended formulation of \*MAT\_036 is very flexible and extremely useful in order to match experimental data. Nevertheless, different sets of parameters may lead to non-convex and non-monotonic yield surfaces.

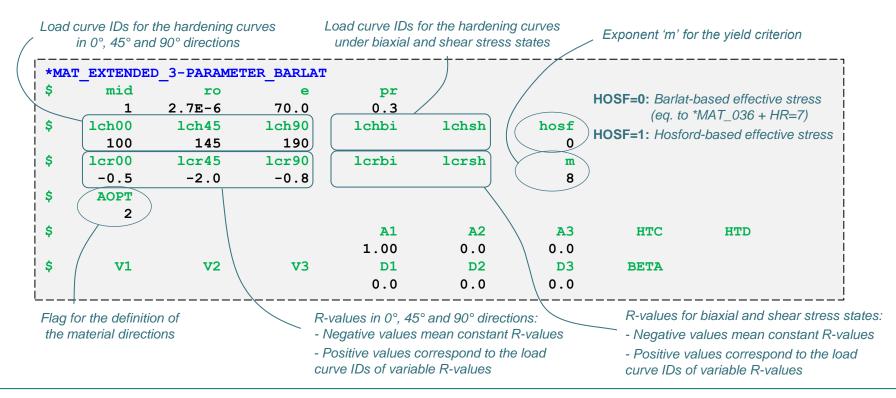






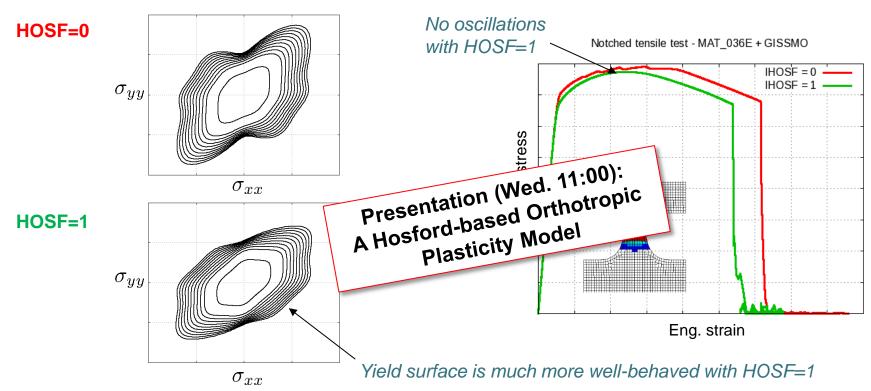
### \*MAT 036E

### Extended formulation with different input format (from R9 on)



### \*MAT 036E

Comparison between Barlat- (HOSF=0) and Hosford-based (HOSF=1) formulations





# Material calibration



### **Material calibration**

Overview of material models an the required tests

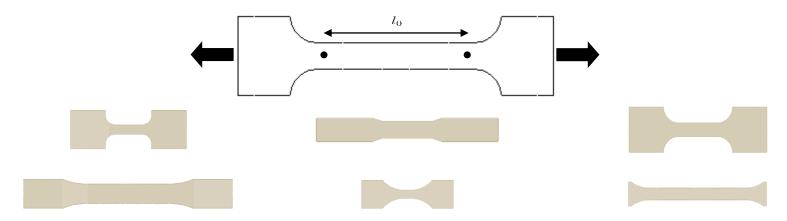
| Test  Material behavior | Quasi-static<br>tensile | Quasi-static<br>compression | Quasi-static<br>Shear/biax | Dynamic<br>tensile/bending | Cyclic<br>tensile/bending/<br>compression |
|-------------------------|-------------------------|-----------------------------|----------------------------|----------------------------|-------------------------------------------|
| Elasticity              | ✓                       | (✓)                         | (✓)                        |                            |                                           |
| Visco-elasticity        | ✓                       | (✓)                         | (✓)                        | ✓                          | ✓                                         |
| Plasticity              | ✓                       | (✓)                         | (✓)                        |                            |                                           |
| Visco-plasticity        | ✓                       | (✓)                         | (✓)                        | ✓                          |                                           |
| Damage                  | ✓                       |                             | ✓                          | (✓)                        | _                                         |

Workshop (Wed. 9:00): Failure prediction with GISSMO



#### Tensile test

- it is a very common and very important test
- with the tensile test it is possible to identify many important mechanical properties such as elastic modulus, yield stress, ultimate tensile strength and elongation
- different specimens available (flat and round specimens, different strain gauges)

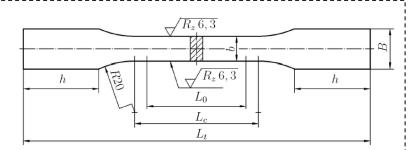


different standards, e.g., for metallic materials DIN EN 10002



From test data to material input

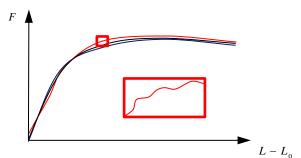
- tensile test necessary information and raw data processing
  - specimen geometry and boundary conditions



#### for each test:

- geometry dimensions
- gauge length
- fixed support
- velocity/strain rate

raw data



raw data information

$$F \Rightarrow \sigma_{\it eng} ~~ L - L_{\it 0} \Rightarrow \varepsilon_{\it eng}$$

raw data processing

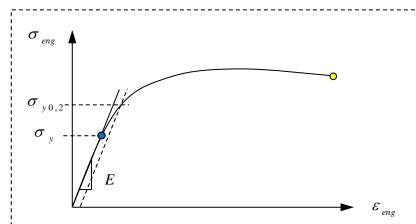
- smoothing, filtering and averaging
- start at (0, 0)

averaging of all test curves



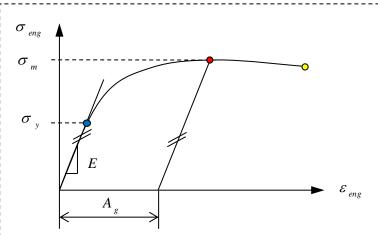
From test data to material input

Young's Modulus and yield stress



Young's modulus → initial slope yield stress → beginning of plastic deformation

Ultimate Strength and necking point



Necking initiation is related to the maximum of the engineering stress-strain curve:

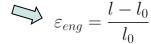
$$\frac{\partial \sigma_{eng}}{\partial \varepsilon_{eng}} = 0$$

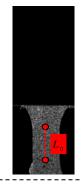


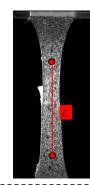
From test data to material input

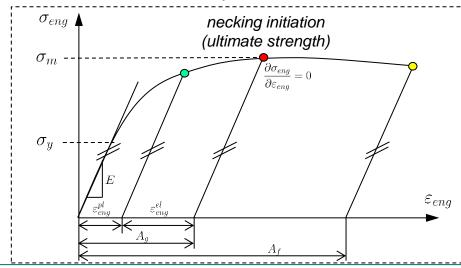
- engineering (or nominal) stress-strain curve
  - engineering stress: axial force per initial area
  - engineering strain: elongation per initial length
  - the engineering stress-strain curve is a usual result from experiments

$$\sigma_{eng} = \frac{F}{A_0}$$







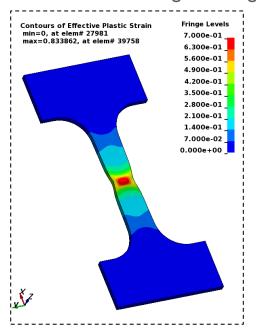


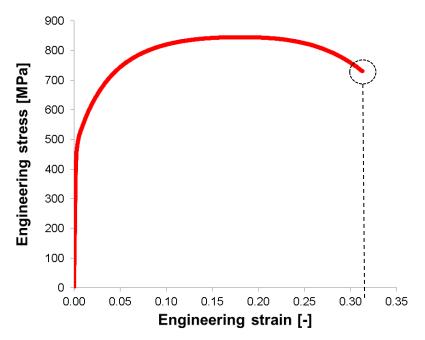
Behavior after necking initiation is unstable:

- further deformation without increasing load
- stress not uniformly distributed over necking region
- triaxial state of stress is unknown
- localization of strain manifested by local necking



Difference between engineering and true strain





Max. true plastic strain: 70%

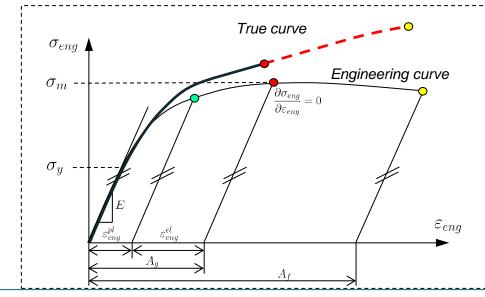
Max. engineering strain: 32%





From test data to material input

- True stress-strain curve
  - True stress: axial force per current unit area
  - True (logarithmic) strain



Standard tensile test: current area A is unknown!



$$\sigma_{true} = \frac{F}{A}$$

$$\Rightarrow$$

$$\sigma_{true} = \frac{F}{A}$$

$$\varepsilon_{true} = \ln \frac{l}{l_0} = \ln(1 + \varepsilon_{eng})$$

True stress **before necking initiation**: Calculation with the assumption of constant volume

$$\sigma_{true} = \frac{F}{A} = \frac{F}{A_0} \frac{A_0}{A}$$
$$= \frac{F}{A_0} \frac{l}{l_0} = \sigma_{eng} (1 + \varepsilon_{eng})$$

True stress after necking initiation: Extrapolation is necessary!



### Calibration of yield curves

Extrapolation strategies after the necking point

In order to identify the **true stress strain curve** after the necking point, several methods are normally used, among then:

- Using information from a shear test
- Using information from a biaxial test
- Through Digital Image Correlation (DIC)
- Reverse engineering

Irrespective of the method adopted for the extrapolation, a suitable model can be used to generate the hardening curve. Some of the most commonly used extrapolation equations are:

• Ludwig: 
$$\sigma_y^{true} = k(\varepsilon_{true}^{pl})^n$$

$$\sigma_y^{true} = a - be^{-c\varepsilon_{true}^{pl}}$$

Swift: 
$$\sigma_y^{true} = k(\varepsilon_0 + \varepsilon_{true}^{pl})^n$$

• Hocket-Sherby: 
$$\sigma_u^{true} = a - be^{-c(\varepsilon_{true}^{pl})^n}$$

• Gosh: 
$$\sigma_y^{true} = k(\varepsilon_0 + \varepsilon_{true}^{pl})^n - p$$



## Calibration of yield curves

Parametrization of the yield curve

Direct *calculation* of the yield curve until  $A_g$  for isochoric materials

$$\sigma_y = \sigma_{eng}(1 + \varepsilon_{eng})$$

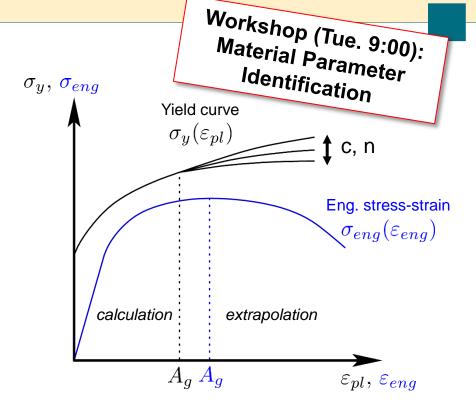
$$\varepsilon_{pl} = \ln(1 + \varepsilon_{eng}) - \frac{\sigma_{eng}}{E}$$

Extrapolation from  $A_g$  with Hockett-Sherby

$$\sigma_y(\varepsilon_{pl}) = A - B e^{(-c \varepsilon_{pl}^n)}$$

 $C^1$ -continuity at  $A_q$ :

Reduction of the function by two variables



> Remaining variables c and n are the remaining free parameters

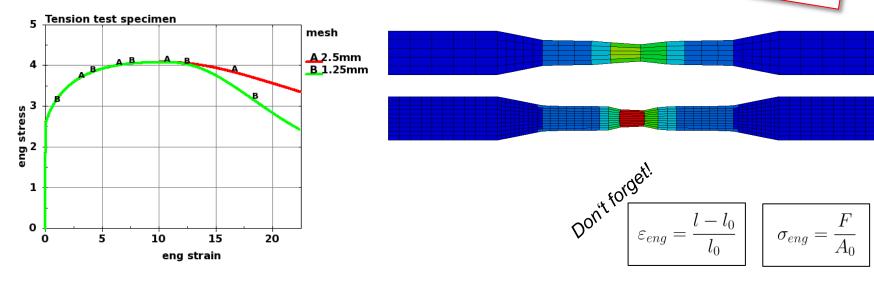


# Calibration of yield curves

Element size dependence

After the necking point the result depends on the element size

Workshop (Wed. 9:00): Failure prediction with GISSMO



After the necking point:

For most material models the characterization only applies to a certain element size!



# The lab @ DYNAmore

### On site material testing

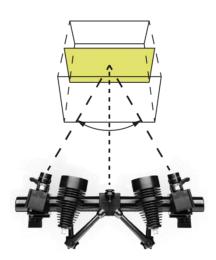
#### Testing equipment

Universal testing machine for quasi-static tests (<100kN)



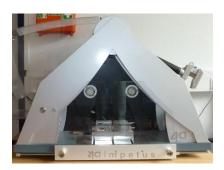
- Tension
- Compression
- Shear
- <sup>l</sup> Biaxial
- Bending
  - Cyclic

Optical measurement (DIC)



- Measurement of the strain field during the test
- Evaluation of the engineering strain in post-processing

4a Pendulum dynamic tests (<4.3 m/s)



- Bending (plastics, composites)
- Compression (foam)

Workshop (Tue. 11:00): VALIMAT



# On site material testing

#### Testing equipment

Quasi-static tension



Quasi-static bending





Quasi-static compression



Quasi-static biax





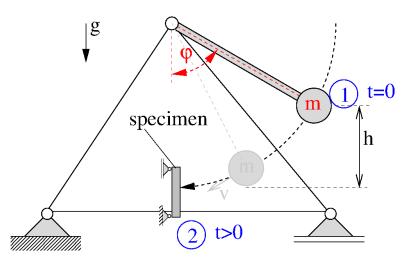
# Testing and modelling of foams using

\*MAT\_FU\_CHANG\_FOAM (\*MAT\_083)



# Dynamic Tests with pendulum – experimental setup

- 4a impetus testing machine:
  - single pendulum
  - dynamic velocities 0.5-4.3 m/s
  - measurement of angle and acceleration at impactor with mass m





t=0: position of m is fixed at 1 with an initial  $W_{pot} = mgh$ 

t>0: m moves from 1 to 2 
$$W_{pot} \ {\rm changes} \ {\rm to} \ W_{kin} = {\textstyle \frac{1}{2}} m v^2$$

at 2: 
$$\min W_{pot}$$
 and  $\max W_{kin}$  impactor hits specimen with  $\vec{p} = m\vec{v}$ 

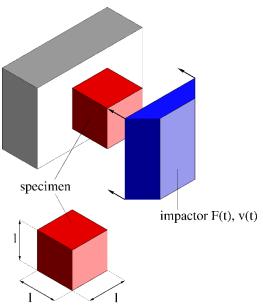


# **Compression test – experimental setup**

- compression test:
  - specimen is fixed by adhevive tape
- variation of nominal strainrate  $\dot{\varepsilon}$  due to
  - different specimen size I
  - different initial velocities v

| strain ra     | ate in 1/s | l in mm | v in m/s |
|---------------|------------|---------|----------|
|               | 0.001      | 20      | 0.00002  |
|               | 0.01       | 20      | 0.0002   |
| AM            | 0.1        | 15      | 0.0015   |
| profession of | 0.3        | 15      | 0.0045   |
|               | 40         | 20      | 0.8      |
| ARCHA T       | 100        | 15      | 1.5      |
|               | 200        | 20      | 4.0      |



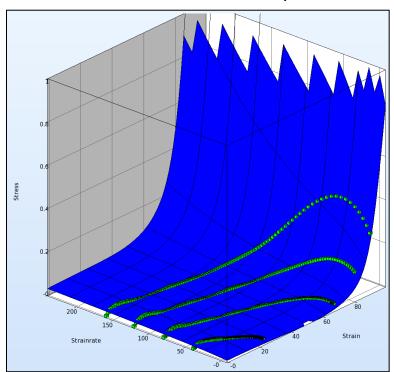


nominal strain rate:  $\dot{arepsilon}=rac{v}{l}$ 

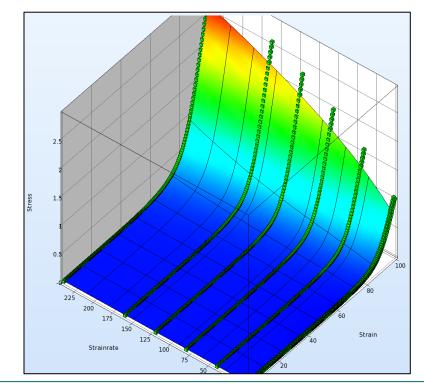


# **Example: LS-OPT meta model**

#### Stress strain cuves from Experiment

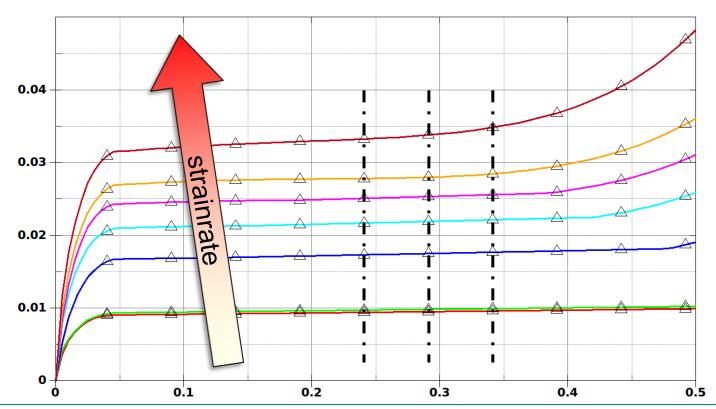


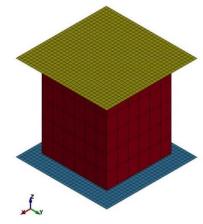
#### Stress Strain curves with constant strain rates





# **Example: Fu-Chang-Foam**





# Testing and modelling of Polymers using

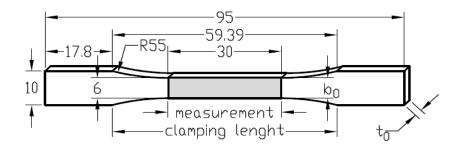
\*MAT\_SAMP (\*MAT\_187)

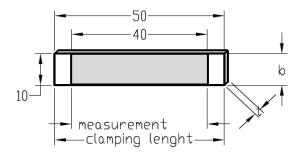


# **Specimen**

- Tensile specimen
  - static and dynamic tests
  - Strain via DIC
  - Engineering strain with I<sub>0</sub>=30 mm
  - Target mesh size: 2mm
  - Milled specimen

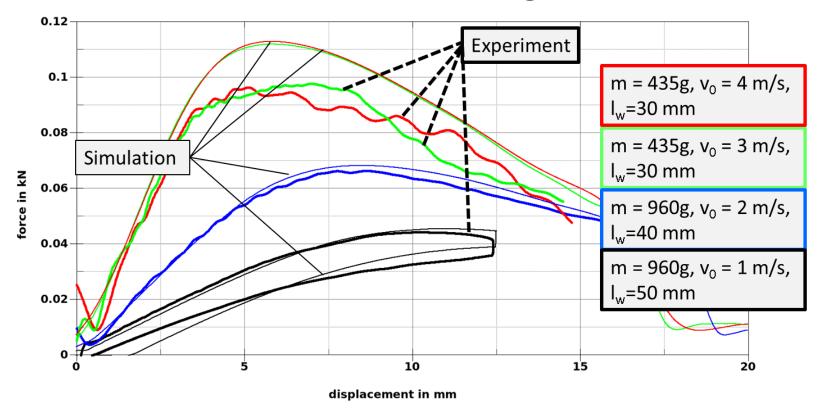
- 3 point Bending:
  - Static and dynamic tests
  - Milled specimen
  - Large of strain rates possible





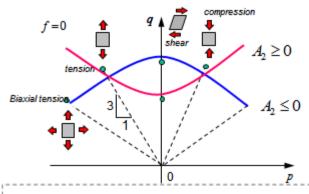


## Results of MAT\_024 + GISSMO card: bending tests



## Material modelling of polymers in LS-DYNA

Isotropic plasticity with SAMP-1 (\*MAT\_187)

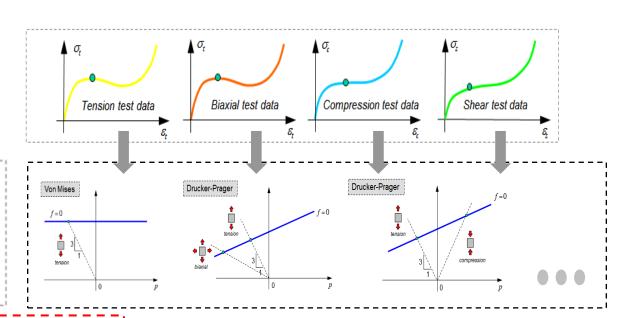


Yield surface:

$$f(p, \sigma_{vm}, \overline{\varepsilon}^{pi}) = \sigma_{vm}^2 - A_0 - A_1 p - A_2 p^2 \le 0$$

Condition for convexity:

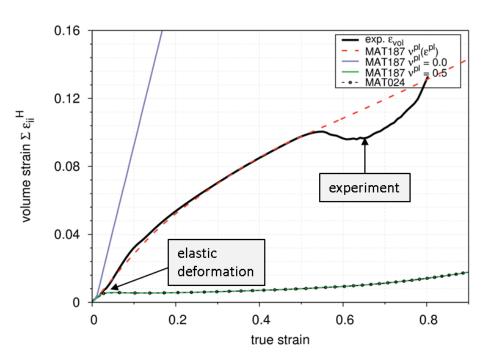
$$A_2 \le 0 \Leftrightarrow \sigma_z \ge \frac{\sqrt{\sigma_t \sigma_\epsilon}}{\sqrt{3}}$$

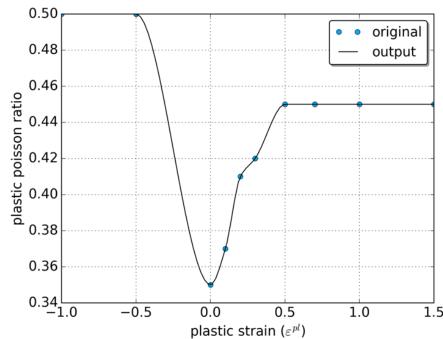


Dependency of plastic poisson ratio



# **SAMP#1:** plastic poisson's ratio

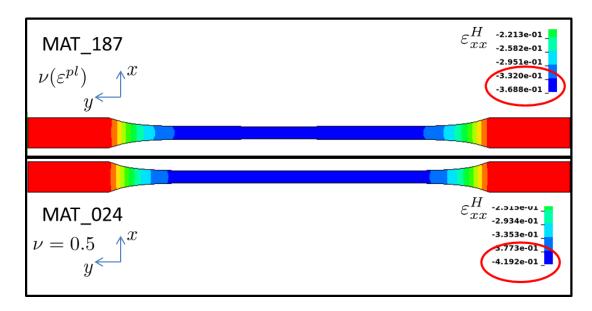






### **SAMP#1: plastic poisson's ratio**

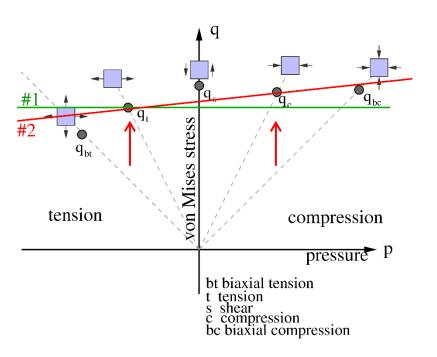
- Taking ratio into account:
  - influence on strain transversal to loading direction
  - influence plastic strain at notch tip
  - important for complex FE-models

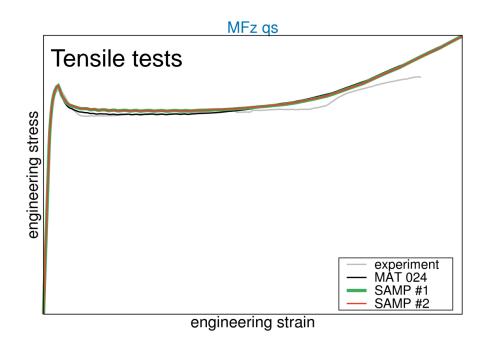


Important for simulation of thermoplastics with increasing macroscopic volume (e.g. Crazing at ABS, HIPS, PC/ABS



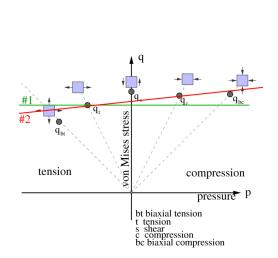
# **SAMP #2: taking compression into account**

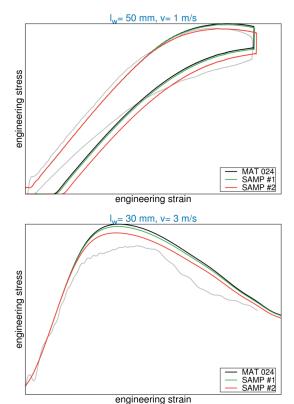


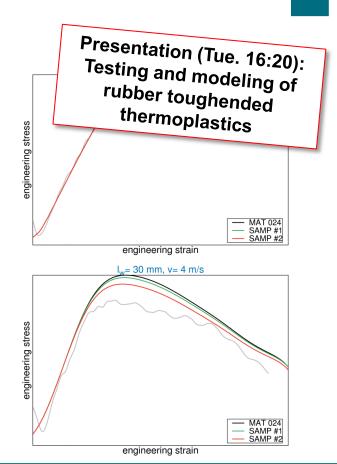




# **Bending results**









# **Experimental material characterization at DYNAmore Stuttgart**



Contact:
DYNAmore GmbH
Dr. André Haufe
Industriestr. 2
70565 Stuttgart
fon: +49 (0)711 / 45 96 00 - 17
email: andre.haufe@dynamore.de







#### Services

- Material deformation characterization and LS-DYNA material model calibration for:
   Polymers, Foams, Metals
- Experiments
  - Tensile, bending, compression, punch test
  - Component testing
  - Local strain analysis with DIC
- Damage and fracture characterization and calibration for GISSMO and eGISSMO models



