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Agenda

▪ Motivation

▪ General Properties of Material *MAT_249_CRASH

▪ Damage and Failure Modelling in *MAT_249_CRASH

▪ Examples

▪ Summary
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Motivation…

▪ Project for material model development and implementation with

▪ Dr. Michael Wrensch, Eric Chowson (Brose)

▪ Dr. David Scheliga, Alexander Huf, Dr. Sebastian Schmeer (IVW, Uni KL)

▪ Goal: Material model for a composite with a woven reinforcement

▪ Focus on thermoplastic matrix material 

▪ Pre-shearing of material during draping (thermoforming) should be considered

▪ Considerable fiber shearing before material failure expected

… to do something
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Motivation…

▪ Standard composite materials in LS-DYNA for crashworthiness are tailored for UD-reinforcements

… for a new material implementation
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Motivation…

▪ Materials for woven structures focus on dry fabrics and/or draping behavior

… for a new material implementation

Basis for a new material model
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*MAT_249_CRASH: General properties

Input, coupling approaches, elastic-plastic behavior, …
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*MAT_249_CRASH: General properties

▪ Full name: *MAT_REINFORCED_THERMOPLASTIC_CRASH

▪ Keyword input:

▪ Matrix input

▪ Material coordinate

system

▪ Fiber contributions

▪ Damage and failure

▪ Additive split between 

▪ Isotropic, elastic-plastic matrix

▪ Anisotropic, hyper-elastic fibers

Input
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v

*MAT_249_CRASH: General properties

▪ Isotropic and hypo-elastic formulation

▪ Von Mises plasticity

▪ Tabular data for yield stress

▪ Flow curves

▪ Strain rate dependency

▪ Strain hardening algorithm

▪ Kinematic

▪ Isotropic 

▪ Mixed strain hardening

Elastic-plastic properties of matrix

matrix only, isotr. hardening

matrix only, kin. hardening

Response to cyclic loading
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*MAT_249_CRASH: General properties

▪ Up to three fiber families can be accounted for

▪ Internally represented by vectors

▪ Based on deformation gradient, current orientation and 

strain of each family is computed

▪ Fiber stretch and compression

▪ Tabular input for non-linear strain-stress response

▪ Transverse shear stiffness in fiber direction can be defined

▪ Shear stress response 

▪ Based on reorientation of neighboring fiber families 

▪ Locking (shear or fiber) angle can be defined

▪ Tabular input for non-linear elastic or elastic-plastic response 

Hyper-elastic fiber formulation

0/90 10/80

Response to shear loadingVector representation



© 2023 DYNAmore GmbHInfoday Automotive and Aerospace Applications | T. Klöppel | *MAT_249_CRASH Slide 11 of 26

*MAT_249_CRASH: General properties
Hyper-elastic fiber formulation

Response to cyclic shear loading

Force vs. time

▪ Up to three fiber families can be accounted for

▪ Internally represented by vectors

▪ Based on deformation gradient, current orientation and 

strain of each family is computed

▪ Fiber stretch and compression

▪ Tabular input for non-linear strain-stress response

▪ Transverse shear stiffness in fiber direction can be defined

▪ Shear stress response 

▪ Based on reorientation of neighboring fiber families 

▪ Locking (shear or fiber) angle can be defined

▪ Tabular input for non-linear elastic or elastic-plastic response 
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*MAT_249_CRASH: General properties

▪ Cyclic loading to separate the effects

Material characterization: In-plane shear behavior

matrix only, kin. hardening

fiber only

matrix only, isotr. hardening
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*MAT_249_CRASH: General properties

▪ Output control

▪ Parameter POSTV defines additional history variables for post-processing 

▪ Additional data are written to the list prior to the algorithmic history variables

▪ Element-wise fiber orientation definition

▪ Parameter IHIS defines how history data in *INITIAL_HISTORY_SHELL are interpreted

▪ Fiber orientations with respect to global or material coordinate system possible

Advanced data output and fiber definition
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*MAT_249_CRASH: Damage and Failure

Basic concept, fiber and matrix softening algorithms, …
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*MAT_249_CRASH: Damage and Failure

▪ Tabular input data relating fiber state to several softening mechanisms 

▪ Fiber length change damage fiber and matrix

▪ Individual softening parameters for fiber stretch and compression

▪ Reorientation of fibers induces softening in the matrix

▪ Matrix deformation cannot trigger 

damage or failure

▪ Artificial fiber viscosity can be 

defined to avoid snapback of 

elements in the vicinity of a crack

A phenomenological approach

Damage and failure
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*MAT_249_CRASH: Damage and Failure

▪ Tabular data input

▪ Define softening parameter 𝑑𝑖
𝑓

vs. fiber strain 𝜆𝑖

ෝ𝝈𝑇
𝑓
=

𝑖
1 − 𝑑𝑖

𝑓
(𝜆𝑖) 𝝈𝑇𝑖

𝑓

▪ Softening of tensile and compressive stresses 

can be considered individually

𝑑𝑖
𝑓,𝑐

𝑡𝑛, 𝜆𝑖 = max(𝑑𝑖
𝑓,𝑐

𝑡𝑛−1, 𝜆𝑖 , DAMC𝑖(𝜆𝑖))

𝑑𝑖
𝑓,𝑡

𝑡𝑛, 𝜆𝑖 = max(𝑑𝑖
𝑓,𝑡

𝑡𝑛−1, 𝜆𝑖 , DAMT𝑖(𝜆𝑖))

▪ Fiber damage of fiber 𝑖 is defined as

𝑑𝑖
𝑓
(𝜆𝑖) = ቐ

𝑑𝑖
𝑓,𝑐
, 𝜆𝑖 < 0

𝑑𝑖
𝑓,𝑡
, 𝜆𝑖 ≥ 0

▪ Integration point fails if all fibers are completely 

damaged, i.e. min
𝑖
𝑑𝑖
𝑓
= 1.

Fiber softening algorithms

One element, uniaxial test 
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*MAT_249_CRASH: Damage and Failure

▪ Matrix is damaged if fibers are shortened or 

elongated 

▪ Tabular input data (softening vs. fiber strain)

▪ Strain rate effects can be accounted for

▪ Matrix is damaged if fibers reorient

▪ Tabular input data (softening vs. shear angle of 

neighboring fibers)

▪ A fully damaged matrix not necessarily triggers 

failure of an integration point

▪ Failure is initiated if softening parameter 

exceeds 1.5

▪ Naturally, stress softening is limited to 1.0

Matrix softening mechanisms

D
A

M
M

1

Fiber Strain

Uniaxial tensile test in fiber direction 
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Examples

Proof of concept
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Ex 1: Three-point bending of a hat-profile
Comparison of an NCF and a woven reinforcement
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Ex 2: Impact example

▪ Based on validation example from the EXTREME project

▪ The aim of the EXTREME project is to develop novel material characterization methods and in-situ 

measurement techniques, material models and simulation methods for the design and manufacture 

of aerospace composite structures under EXTREME dynamic loadings. 

▪ The EXTREME project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 636549.
Simplified model

▪Geometry

▪Shell model

▪Constant thickness (3.2mm)

▪Same lay-up everywhere

Set-up
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Ex 2: Impact example
Results for quasi-isotropic composite
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Ex 2: Impact example
Results for different simple composites with woven reinforcements

base orientation

c
o

n
to

u
rs

 o
f 

m
a

tr
ix

 d
a

m
a

g
e

-45/45

0/90

-40/40



© 2023 DYNAmore GmbHInfoday Automotive and Aerospace Applications | T. Klöppel | *MAT_249_CRASH Slide 24 of 26

Summary
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Summary

▪ Discussed new material model *MAT_249_CRASH

▪ Additive split between an isotropic, elastic-plastic matrix and anisotropic, hyper-elastic fibers

▪ Phenomenological description of damage and failure

▪ Damage due to fiber elongation and compression considered individually

▪ Showed some applications

▪ Pre-shearing of material from draping (thermoforming) can be considered

▪ Fiber shearing before material failure can occur

▪ Applicable to woven textiles, UD layers and NCFs

▪ Calibration of the model successfully completed in the project with Brose and the IVW
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Find us on 

DYNAmore GmbH

Industriestr. 2

70565 Stuttgart-Vaihingen

Germany

Tel.: +49 - (0)711 - 459 600 0

Fax: +49 - (0)711 - 459 600 29

info@dynamore.de

www.dynamore.de

www.dynaexamples.com

www.dynasupport.com

www.dynalook.com

DYNAmore worldwide

Germany ■ France ■ Italy ■ Sweden ■ Switzerland ■ USA
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