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RHODIA : Six enterprises, leaders in their 

markets

Polyamide Novecare

Silcea

Energy Services

AcetowEco Services

Corporate  and others

% of sales of Rhodia in 2009

20%

16%

5%

14%5%

37%
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RHODIA Global presence
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Manufacturing Plant upstreamApplication & Technology 

Development Centre

R&D Centers

Worldwide Headquarter

Regional Headquarter

Paulinia

Santo Andre

Sao Paulo

Cranbury

Jacarei

San Bernardo

Qingdao

Seoul

Shanghai

Onsan

Manufacturing Plant downstream

Gorzow

Freiburg

Chalampé

Lyon 

Belle-Etoile

Valence

Blanes

New capacities
in Onsan & Shanghai 

(polymers and compound)

New R&D center in China

New polymerization

and Phenol capacities

in Brazil

Continuous cost improvements

in Europe and mature markets
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RHODIA is the only fully integrated Polyamide 6.6 player 

with a strong position in Engineering Plastics
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* Rhodia estimates

2008 Sales* in €m

Intermediates EP Fibers
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The TOOLS, The DATA and The EXPERTIZE that you 

need to develop optimal polyamide parts.
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polyamide matrix behavior

• Constitutive models of increased 
complexity :

• Elastic
• =f(temperature, strain rate)
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polyamide matrix behavior

• Constitutive models of increased 
complexity :

• Elastic
• =f(temperature, strain rate)

• Elastoplastic
• = f(temperature, strain rate)
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polyamide matrix behavior

• Constitutive models of increased 
complexity :

• Elastic
• =f(temperature, strain rate)

• Elastoplastic
• = f(temperature, strain rate)

• Elasto-viscoplastic
• = f(temperature)
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•Same modulus

•Same yield limit 
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polyamide matrix behavior

• Constitutive models of increased 
complexity :

• Elastic
• =f(temperature, strain rate)

• Elastoplastic
• = f(temperature, strain rate)

• Elasto-viscoplastic
• = f(temperature)

• Viscoelastic-viscoplastic
• = f(temperature)
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polyamide matrix behavior

• Constitutive models of increased 
complexity :

• Elastic
• =f(temperature, strain rate)

• Elastoplastic
• = f(temperature, strain rate)

• Elasto-viscoplastic
• = f(temperature)

• Viscoelastic-viscoplastic
• = f(temperature)

• Yield surface dependant or not
• Tension = compression

• Tension<>compression
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polyamide matrix behavior

• Constitutive models of increased 
complexity :

• Elastic
• =f(temperature, strain rate)

• Elastoplastic
• = f(temperature, strain rate)

• Elasto-viscoplastic
• = f(temperature)

• Viscoelastic-viscoplastic
• = f(temperature)

• Yield surface dependant or not
• Tension = compression

• Tension<>compression

• Failure criteria
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Better                          composite understanding.
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Current understanding without MMI MMI understanding with fiber orientation

Empirical coefficient

Performance reduction

ISO 527 MMI

Same material !

σσσσ

εεεε

σσσσ

εεεε
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MMI

Better                          composite understanding.
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ISO 527

Same material !

F

U

F

U

Absorbed energy = 100 Absorbed energy = 120 to 220

Empirical coefficient

Performance reduction
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Better                          composite understanding.

C.DEMAIN - Altair HTC 2010

Apply failure indicators on 

unidirectional composite 

pseudo grain :

Tsaï Hill 2D strain

A micro-structure dependent 

failure indicator !

A critical number of failed 

pseudo grain must be 

defined to activate failure.

First Pseudo Grain Failure at integration point
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MMI ConfidentDesign : Data availability
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MMI ConfidentDesign : Rhodia offer in Digimat-MX
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Rhodia offer is 1638 material files 

today available in DIGIMAT-MX !
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M.M.I. simulation process
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Mapping tensors

from Moldflow mesh

to structure mesh

Injection Moulding Simulation

Glass fibre orientation

Unique advanced 

experimental database on 

mechanical behaviour 

Matrix, Fillers

Impact and Damage

•Material laws

Multi-scale modelling

•by •and

Digimat-MX

Material Database

•High level mechanical calculation

•Static and dynamic / Impact / Creep
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The MMI Beam

A new tool to get closer to structural parts



Designed for multi-testing conditions :
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Bending and Impact

Compression

Tension

Torsion
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A multi gating design ?

C.DEMAIN - LS-DYNA 201124



? to get many different micro-structures
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2 Gates

5 Gates

Aligned fiber orientation

Diffuse fiber orientation with 

weld lines
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Fixations

Ball impact

Courtesy of

Fixations

Real impact test on a large ribbed part
Boundary conditions



Failure plastic strain : 1.8 %

Real impact test on a large ribbed part
Isotropic Material

True strain
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TECHNYL A218 V30 @ Eh0, 23°C



Real impact test on a large ribbed part
M.M.I Material

• High end use of Digimat software : combining anisotropy 
and strain rate dependency

• Glass Fiber :
• Elastic

• Aspect Ratio

• Weight fraction

• Orientation on all the part

• PA66 Matrix :
• Elasto-Viscoplastic

• Fitted by M.M.I. ConfidentDesign approach

• Failure criteria :
• Total strain



Real impact test on a large ribbed part 
Isotropic Material

With the courtesy of

With isotropic material the model do not break

The part fails in real life



Courtesy of

Real impact test on a large ribbed part 
MMI – injection simulation

Fiber orientation



Failure area: good correlation achieved with MMI

Part test

Courtesy of

Real impact test on a large ribbed part 
MMI – impact result



Displacement (m)

F
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N
)

With MMI, excellent energy absorption correlation

Courtesy of

Real impact test on a large ribbed part 
MMI – energy absorption



Material 
isotropic approach
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Plastic strain failure criteria: 1.9 %
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Material 
MMI approach

• High end use of Digimat software :

• Glass Fiber :
• Elastic

• Aspect Ratio

• Weight fraction

• Orientation on all the part

• PA66 Matrix :
• Elasto-Viscoplastic

• Fitted by M.M.I. ConfidentDesign approach

• Failure criteria :
• FPGF (First Pseudo-Grain Failure)

• Fast determination of FPGF parameters
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• MMI material definition fitted Elasto-
viscoplastic with Basic FPGF

Max strain used as FPGF Inputs for Tsaï Hill 2D strain,

Critical factor 0.85, no reverse engineering
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MMI beam

presentation of impact model

• Dynamic flexion test
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Mass of 18 kg

• 3 m/s for 5 gates

• 4,8 m/s for 2 gates

• Beam 

The sides were cut off
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MMI beam – 2 gates
correlation experiment / MMI 
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MMI beam – 2 gates 
correlation experiment / MMI
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Failure at the same

time
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MMI beam – 2 gates 

Failure prediction
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Aligned

Diffuse

Aligned on stress

The failure area could be explained by the fiber 

orientation

Weak zone
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Transverse on stress



MMI beam – 5 gates 

Failure prediction
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MMI beam – 5 gates 

Failure prediction
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Failure occurs 

too late 
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Same failure

area



MMI beam – 5 gates 

Failure prediction
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Aligned

Diffuse

The failure area could be explained by the fiber 

orientation

Weak zone
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diffuse



MMI beam – 2 gates
Force correlation

45
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Failure in experimental and MMI 

Failure with isotropic approach

Good correlation in force and failure



MMI beam – 5 gates
force correlation
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FPGF criteria (MMI)

Failure with isotropic approach

No correlation in failure with FPGF criteria, 

MMI approach is closer to test in stiffness46
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Conclusions

• With the FPGF failure model 
• We obtain some interesting results in 2 gates case :

• Correlation in term of failure and force

• Failure related to microstructure

• The failure model is very promising

• To be improved :
• FPGF parameter

• Run MMI fitting process on FPGF parameters to get better value on transverse and shear !

• Material behavior
• Add hydrostatic pressure dependency (tension/compression behavior)
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Q&A
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