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Updated Overview of Some LS-OPT Features 
© Copyright, LSTC, 2004 

Dr. Nielen Stander 

www.crashoptimization.com 

 

Introduction 

LS-OPT is a standalone Design Optimization and Probabilistic Analysis package with an interface 
to LS-DYNA.  In the "conventional design" approach, a design is improved by evaluating its 
"response" and making design changes based on experience or intuition. This approach does not 
always lead to the desired result, that of a ‘best’ design, since the design objectives are often in 
conflict. It is therefore not always clear how to change the design to achieve the best compromise 
of these objectives. A systematic approach can be obtained by using an inverse process of first 
specifying the criteria and then computing the ‘best’ design according to a formulation. The 
improvement procedure that incorporates design criteria into a mathematical framework is referred 
to as Design Optimization This procedure is often iterative in nature and therefore requires 
multiple simulations. 

No two products of the same design will be identical in performance, nor will a product perform 
exactly as designed or analyzed. A design is typically subjected to Structural variation and 
Environmental variation input variations that cause a variation in its response that may lead to 
undesirable behavior or failure. In this case a Probabilistic Analysis, using multiple simulations, is 
required to assess the effect of the input variation on the response variation and to determine the 
probability of failure. 

To run and control multiple analyses simultaneously, LS-OPT provides a simulation environment 
that allows distribution of simulation jobs across multiple processors or networked computers. 
Each job running in parallel consists of the simulation, data extraction and disk cleanup. 
Measurements of time remaining or performance criteria such as velocity or energy are used to 
measure job progress for LS-DYNA’s explicit dynamic analysis calculations.  

The graphical preprocessor LS-OPTui facilitates definition of the design input and the creation of 
a command file while the postprocessor provides output such as approximation accuracy, 
optimization convergence, tradeoff curves, anthill plots and the relative importance of design 
variables. The postprocessor also links to LS-PrePost to allow the viewing of the model 
representing a chosen simulation point. 

Typical applications for LS-OPT are 

Design Optimization  

System Identification  

Probabilistic Analysis  

Future versions of LS-OPT will combine optimization and probabilistic analysis features in 
Reliability-Based Design Optimization. 
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Capabilities 

Optimization 

The Optimization capability in LS-OPT is based on Response Surface Methodology and Design of 
Experiments. The D-Optimality Criterion is used for the effective distribution of sampling points 
for effective generalization of the design response. A Successive Response Surface Method allows 
convergence of the design response. Neural Networks provide an updateable global approximation 
that is gradually built up and refined locally during the iterative process. A Space Filling sampling 
scheme is used to update the sampling set by maximizing the minimum distances amongst new 
and existing sampling points. 

LS-OPT allows the combination of multiple disciplines and/or cases for the improvement of a 
unique design. Multiple criteria can be specified and analysis results can be combined arbitrarily 
using C or FORTRAN type mathematical expressions. 

Response Surface Methodology 

Response surface methodology (RSM) is a collection of statistical and mathematical techniques 
useful for developing, improving and optimizing the design process. RSM encompasses a point 
selection method (also referred to as Design of Experiments, Approximation methods and Design 
Optimization to determine optimal settings of the design dimensions. RSM has important 
applications in the design, development, and formulation of new products, as well as in the 
improvement of existing product designs.  

In LS-OPT, Response Surface Methodology is used both in Optimization and Probabilistic 
Analysis as a means to reduce the number of simulations. In the latter procedure, RSM is also used 
to distinguish deterministic effects from random effects. 

Probabilistic Analysis 

LS-OPT enables the investigation of stochastic effects using Monte Carlo simulation involving 
either direct FE Analysis or analysis of Surrogate models such as Response Surface Methodology 
or neural networks. As an input distribution, any of a series of statistical distributions such as 
Normal, Uniform, Beta, Weibull or User-defined can be specified. Latin Hypercube sampling 
provides an efficient way of implementing the input distribution. Histograms and influence plots 
are available through the postprocessor (Version 2.2). 

Instability/Noise/Outlier Investigations (Version 2.2) 

Some structural problems may not be well-behaved i.e. a small change in an input parameter may 
cause a large change in results. 

LS-OPT computes various statistics of the displacement and history data for viewing in the LS-
DYNA FE model postprocessor (LS-PrePost). The methodology differentiates between changes in 
results due to design variable changes and those due to structural instabilities (buckling) and 
numerical instabilities (lack of convergence or round-off). Viewing these results in LS-PrePost 
allows the engineer to pinpoint the source of instability for any chosen response and therefore to 
address instabilities which adversely affect predictability of the results. 
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Tradeoff 

A tradeoff study enables the designer to interactively study the effect of changes in the design 
constraints on the optimum design. E.g. the safety factor for maximum stress in a beam is changed 
and the designer wants to know how this change affects the optimal thickness and displacement of 
the beam. 

Variable Screening  

For each response, the relative importance of all variables can be viewed on a bar chart together 
with their confidence intervals. This feature enables the user to identify variables of lesser 
importance that can be removed from the optimization, thereby contributing to time saving while 
having little effect on the final result. 

Glossary 

Design of Experiments 

A point selection method for determining the number and locations of sampling points in the 
Design Space. A simulation is done at each sampling point. 

Approximation 

A simple mathematical function acting as a substitute (or surrogate model) to generalize the (often 
highly complex) Response variation across the Design Space. 

The result obtained from an analysis (e.g. Finite Element Analysis) of a product or process. The 
response is used as a criterion in  Design Optimization or Probabilistic Analysis. 

Design Optimization 

The process of setting the design variables, typically the dimensions, of a product to minimize or 
maximize the value of its Response. A more general form of optimization includes specified limits 
on other responses (constrained optimization). 

Probabilistic Analysis 

The analysis of a set of different designs with a specified distribution in order to determine the 
characteristics (such as the mean and standard deviation) of the Response distribution. 

Design Space 

The region between the lower and upper limit for each of the design variables. These are specified 
to prevent the occurrence of designs with extreme of nonsensical dimensions (such as negative 
thicknesses). 

Region of interest 

A part of the Design Space considered being of interest for design exploration or Design 
Optimization. 

Design Variable 

An independent variable or dimension which forms part of the description of a design. Typical 
design variables are thickness dimensions, geometrical dimensions or values of material constants. 
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D-Optimality Criterion 

A criterion that determines how well the coefficients of the design Approximation are estimated. 
The changes in the locations of the sampling points to maximize this criterion maximizes the 
confidence in the coefficients of the Approximation model. 

Robust 

A robust product performs consistently on target and is relatively insensitive to parameters that are 
difficult to control. A robust design minimizes the noise transmitted by the noise variables. 

Noise variable 

A parameter of a product that has some degree of uncontrollability while the product is being 
manufactured or used in the field up to the end of its lifetime. 

Response Noise 

The random component of a response variation that can be caused by instability of the structure 
(such as buckling), numerical roundoff during analysis or modeling effects such as Finite Element 
meshing or lack of convergence during analysis 

Successive Response Surface Method 

The successive response surface method is an iterative method which consists of a scheme to 
assure the convergence of an optimization process. The scheme determines the location and size of 
each successive Region of interest in the Design Space, builds a response surface in this region, 
conducts an Design Optimization and will check the tolerances on the Responses and design 
variables for termination. When using neural networks instead of polynomials as a Surrogate 
model, the Approximation is updated instead of newly constructed in each iteration. Consequently, 
the final approximation has a global representation that can be used for optimization, tradeoff 
studies or probabilistic analysis. 

Structural variation 

Variation in the dimensions or material properties of a product. 

Environmental variation 

Variation in the loads such as force (perhaps due to impact) and temperature considered in the 
design of a product.  

System Identification 

The determination of system parameters such as material constants to minimize the difference 
between computational responses and experimental results. The purpose is to identify the system 
parameters of a model by using experimental results of a physical experiment. 

Surrogate model  

Approximation 
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LS-OPT is delivered with LS-DYNA at no charge. 

 

 

LS-OPT User’s 
Manual Version 2 
including shipping 

$140 International 

$70.00 USA 

To order contact 
vic@lstc.com  
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At Intel's Developer Forum held in San Francisco, CEO Craig Barrett discussed Digital Technology 
Transforming Industries, Organizations. 

Digital Technology Transforming Industries, Organizations. 
 
Silicon and Solutions Drive Change, Increase Productivity, Create Opportunity.  Topics include 64-
bit Memory Extensions, HyperThreading (HT), Intel® Centrino™ mobile technology and more... 
 
SAN FRANCISCO, Feb. 17, 2004 - Intel Corporation CEO Craig Barrett today described how the 
pervasive use of digital technology and continued technology advancement are driving the fundamental 
transformation of commerce, entertainment and communications worldwide. Speaking to more than 4,800 
technology industry engineers, developers and designers at the Intel Developer Forum (IDF), Barrett 
described the changes taking place and the significant opportunities being created by technology for 
organizations and individuals.  
 
"As organizations around the world look to information technology to increase productivity and 
performance, we're entering a period of rapid change driven by investment in new technology," said 
Barrett. "The transformation we're seeing with the convergence of computing and communications, with 
businesses continuing to embrace technology, and with the way entertainment is delivered and consumed, 
will begin to be applied to areas such as health care, life sciences, genomics, and new forms of 
computational innovation. Digital technology and silicon will be at the center of innovation as new 
opportunities, new fields of endeavor and new business models emerge to benefit from this 
transformation." 
 
"At the same time, as digital technology becomes more pervasive, we must avoid making it overly 
complex for end-users. Intel and the industry must focus on developing solutions -- not just technical 
features -- that meet customer requirements and which can be more easily implemented at lower cost in 
enterprises, the digital home and in wireless communications." 
 
The Intel Itanium® processor family is a notable example of the company's solutions-oriented approach to 
enterprise computing. Through industry collaboration and investments in software support and other 
important complementary technologies, the Itanium processor family is gaining momentum with key 
customers and improving business productivity. Intel sold more than 100,000 Itanium processors in 2003 
and major system installations are being deployed at many Fortune 500 companies.  
 
"Acceptance of the Itanium processor in key areas such as the financial services industry is extremely 
gratifying," Barrett said. "More and more firms in a variety of industries are realizing the performance, 
reliability, scalability, manageability and other benefits of Itanium-based platforms." 
 
In other areas of computing, Intel is focused on meeting new opportunities by developing technologies 
and platforms for a broad range of customer needs that go beyond sheer chip speed. Intel has already 
brought to market technologies such as HyperThreading (HT) and Intel® Centrino™ mobile technology 
that provide end-user benefits in addition to better performance.  
 
The company has also announced plans to bring the benefits of LaGrande technology (LT) to enhance 
secure computing; Vanderpool technology (VT), which would increase system reliability, flexibility and 
responsiveness; and other technologies to improve processing of digital media, packet processing, runtime 
performance, and data mining and synthesis. In the future, Intel processors will also incorporate other 
enhancements that will benefit the overall platform.  
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Beginning in the second quarter, Intel will introduce 64-bit memory extension technology to its IA-32 
architecture for server and workstation processors. The 64-bit extension technology is one of a number of 
platform innovations Intel plans to deliver, or already is delivering to this segment of the market. Others 
include Intel Hyper-Threading technology, PCI Express, DDR2 memory support, enhanced power 
management and SSE3 instructions.  
 
"Intel has the resources, flexibility, breadth of support and technical prowess to provide customers with 
the features they require for their computing needs," Barrett said. "Offering a broad lineup of solutions 
means that when combined with the Itanium processor family - which is designed specifically for 
business critical high-end server, and technical computing market segments -- we can provide leadership 
solutions from top to bottom in a variety of 64-and 32-bit configurations." 
 
Intel is also focusing resources and attention on the transformation taking place in the home environment. 
The growing use of digital technology in the home is creating new opportunities for companies that can 
provide value and increased capabilities at lower cost for consumer electronic devices. Likewise, 
broadband wireless technology is transforming computing and communications. Much like Intel's 
Centrino mobile technology has changed the way businesses and individuals can now use technology, 
next generation cellular technologies along with new communications standards such as WiMax will 
further accelerate the convergence of computing and communications and improve productivity. 
 
"Silicon technology is the engine driving the transformation of commerce, entertainment, education and 
science," Barrett said. "Intel's investments in R&D, manufacturing capacity and worldwide markets 
combined with our focus on providing customers a broad range of solutions, means the opportunities for 
growth and innovation are limited only by our own imaginations." 
 
More information available on the following websites:  
 
Intel in Manufacturing:  http://www.intel.com/go/manufacturing  
64-bit memory extensions:  http://developer.intel.com/technology/64bitextensions/  
HyperThreading (HT): http://www.intel.com/products/ht/hyperthreading.htm  
Intel® Centrino™ mobile technology: http://www.intel.com/products/mobiletechnology/index.htm  
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The TopCrunch Project 
www.topcrunch.org  

 
The TopCrunch project was initiated to track the aggregate performance trends of high performance 
computer systems and engineering software. Instead of using a synthetic benchmark, actual engineering 
software applications are used with real data and are run on high performance computer systems. The data 
are available for download in the form of data files for our current software suite. With time, we expect to 
track the evolution of delivered performance as a function of enhancements in both software algorithms 
and hardware. The results of the benchmarks are available as submitted, and may be searched by data, 
code name, and year. Summaries and overall rankings are posted twice per year following the precedent 
set by TOP500. 
 
FAQ: 

Who runs TopCrunch? 

Prof. David Benson at UCSD runs TopCrunch, with support from his students, post-docs, research 
engineers, and web site support from the Jacobs School of Engineering.  

How do I contact TopCrunch? 

For web site related problems, click on “webmaster” at the bottom of the page. For issues 
associated with the benchmarks themselves, contact dbenson@ucsd.edu. 

Who funds TopCrunch? 

TopCrunch is supported by DARPA HPCS through a subcontract from the USC Information 
Sciences Institute.  

Why do you use production codes for the benchmarks? 

The objective is to track the aggregate computing performance available to scientists and 
engineers. Synthetic benchmarks are usually more highly optimized than production codes 
because they are much smaller and simpler codes, and therefore don’t reflect real world 
performance. Research codes are generally not available to the broad range of people we would 
like to see perform the benchmarks, lack the breadth we are seeking, and the limited resources of 
the developers means that they can’t provide the support required for non-specialists to use them.  

How are the benchmark codes chosen? 

The benchmarks are chosen to reflect the types of calculations performed in the mechanical and 
aerospace communities. Therefore, codes associated with structural dynamics (LS-DYNA), fluid 
flow (CTH), and materials science (SPaSM) have been chosen. These codes have different 
challenges to address in terms of domain decomposition, message passing, load balancing, and 
dynamic memory allocation that makes the comparison of their relative scaling interesting. 
Additional codes may be added in the future. 

How are the benchmarks problems chosen? 

The benchmark problems are chosen to reflect current engineering practice in the real world, and 
to have a structure that allows them to be scaled up as computer performance grows. The problems 
are not intended to be optimal analyses, i.e., the fastest possible choice of options to achieve a 
particular solution, because engineers rarely have time to optimize their analyses in real life. For 
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example, the accuracy of the stress distribution in a structural element increases with the number 
of Gaussian quadrature points, but at the expense of speed. For a given level of accuracy, there is, 
therefore, a choice that maximizes speed. It is, however, common engineering practice to use more 
points than absolutely necessary because an inaccurate solution will require rerunning the analysis, 
which effectively doubles its cost and more than doubles the wall clock time to get an acceptable 
answer. The same general observation holds true for many other analysis choices to be made. 

How do I obtain the benchmark codes? 

The codes are available directly from their authors, and are not available on this site. The contact 
information is given on the code description pages. 

How do I run the benchmark problems? 

The general command lines required for executing a program are given on the code description 
pages, along with pointers to additional documentation for the codes. 

Can I change the problem data? 

No! Aside from the number of processors, no changes are permitted. As discussed, the problems 
are chosen to represent current industrial practice, and are not optimized for performance. Our 
goal is to track software and hardware performance, not analyst performance!  

How do I obtain technical support for running the problems? 

Technical support for running the codes is available through the software providers. If a particular 
problem downloaded from this site doesn’t run, contact David Benson. 

How do I submit the benchmark results? 

Mail the ASCII output files from the analyses, which contain the timings, to Administrator. The 
entire file must be submitted, not just the timings.  

How does TopCrunch prevent people from cheating? 

We can’t. We try to avoid obvious cheating by requiring the ASCII output files, but we recognize 
that a determined cheater can readily edit the output. We reserve the right to withdraw or not post 
results that appear suspicious, and to require benchmarkers to provide additional proof such as the 
binary restart and plot files. But we explicitly don’t warranty the accuracy of the benchmark 
results. If you feel that results posted here are incorrect, please contact the Administrator. 

Can I run the benchmark problems with my own code? 

As one objective of the site is to track software advances, competition between codes is 
welcomed. However, in the interests of fairness, if you wish to have your results posted, you must 

Run a model that is identical in all respects to the benchmark model. This includes, but is not 
limited to, element formulation, the number of integration points, time step scaling, material 
models, and domain decomposition (including the specification of contact surfaces).  

Be willing to supply us with access to the results for verification and provide a version of the code 
to a platform of our choice under our control to run your data file and program independently at no 
cost to us.  
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Should I buy my computer based on the posted results? 

We recognize that these results may be useful to some users in making basic decisions about their 
computing requirements. However, be aware of the following caveats: 

The performance of a computer is the result of many aspects of the system, including the chip, the 
available memory, the connection between the processors (e.g., Gigabit Ethernet vs. Myrinet), the 
version of the operating system, the version of MPI, and the particular version of the benchmark 
code.  

The performance is also subject to the particular circumstances under which it was performed, 
e.g., a benchmark run in a single user mode will usually be faster than one that was run with other 
users on the system.  

We explicitly don’t warranty the accuracy of the numbers posted on this site. 
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February Updated Conference News 
By LSTC and ETA 

LS-DYNA Conference May 2-4 2004 
 

 

Keynote Speakers: 

Dr. Priya Prasad 
Ford Technical Fellow, Manager 

Vehicle Safety R & D 
Ford Motor Company 

 
Dr. Ted Belytschko 

Walter P. Murphy Professor 
Northwestern University 

Larry J. Achram, Vice President 
Virtual Engineering & Crossfire 

DaimlerChrysler 
            

 
 

2004 Sponsors 

CRAY ETA HP 

IBM INTEL NEC 

SGI LINUX NETWORX RACKSAVER 

 
 

2004 Exhibitors 
 

Altair 
 

AMD ANSYS, INC 

ARUP 
 

BETA CAE Systems CEI 

CRAY 
 

ESI Group ETA 

FIJITSU 
 

FTSS HP 

IBM 
 

INTEL LINUX NETWORX 

MSC.SOFTWARE 
 

NEC PARACEL 

PLATFORM COMPUTING 
 

RACKSAVER RED CEDAR TECHNOLOGY 

SUN   
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Register On Line:   www.ls-dynaconferences.com 
 
Conference Only   
 Registration $ 450 
 Early Registration (prior to 04/16) $ 400 
 Student Rate (with valid ID) $ 275 
 
Conference & Training Seminar May 5th & 6th  
 Registration $ 900 
 Early Registration (prior to 04/16) $ 800 
 Student Rate (with valid ID)  

 

Training Seminar Only May 5th & 6th  
 Registration $ 450 
 Early Registration (prior to 04/16) $ 400 
 Student Rate (with valid ID) $ 275 

 

Conference Registration Includes 
1.  Conference Proceedings and Sessions 
2.  Continental Breakfast, Lunch, Refreshments 
3.  Reception and Conference Banquet 
4.  Admittance to Exhibition 

Training Seminar Registration Includes: 

1.  Hands-on workshop w/Seminar Handouts 
2.  Continental Breakfast 
3.  Lunch 
4.  Refreshments 

Pre-Conference Seminar:  VPG3.0: a new pre/post environment for LS-DYNApc 
                                              3:00 p.m. – May 2nd  

SEMINARS – May 5th & 6th 

Advanced Crashworthiness  Paul DuBois (Consultant) 

Heat Transfer Analysis  Arthur  Shapiro, Ph.D.  (LSTC) 

Implicit Analysis   Bradley Maker, Ph.D. (LSTC) 

LS-OPT  Nielen Stander, Ph.D. (LSTC) 

LS-PrePost   Philip Ho (LSTC) 

Metal Forming  Xinhai Zhu, Ph.D. (LSTC) 

ALE/Eulerian & Fluid Structure Interaction  Mhamed Souli, Ph.D (Univ. de Lille) 
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FEA Information Participants 
Commercial, Contributing, and Educational 

Headquarters Company  

Australia Leading Engineering Analysis Providers www.leapaust.com.au  

Canada Metal Forming Analysis Corp. www.mfac.com  

China ANSYS – China www.ansys.com.cn  

China MSC.Software – China www.mscsoftware.com.cn  

Germany DYNAmore www.dynamore.de 

Germany CAD-FEM www.cadfem.de 

India GissEta www.gisseta.com  

Italy Altair Engineering srl www.altairtorino.it 

Italy Numerica srl www.numerica-srl.it  

Japan The Japan Research Institute, Ltd www.jri.co.jp  

Japan Fujitsu Ltd. www.fujitsu.com  

Japan NEC www.nec.com  

Korea THEME Engineering www.lsdyna.co.kr  

Korea Korean Simulation Technologies www.kostech.co.kr  

Russia State Unitary Enterprise - STRELA www.ls-dynarussia.com 

Sweden Engineering Research AB www.erab.se  

Taiwan Flotrend Corporation www.flotrend.com 

UK OASYS, Ltd www.arup.com/dyna 

USA IBM www-1.bim.com/servers/deepcomputing  

USA INTEL www.intel.com  

USA Livermore Software Technology www.lstc.com  

USA Engineering Technology Associates www.eta.com  

USA ANSYS, Inc www.ansys.com  

USA Hewlett Packard www.hp.com  

USA SGI www.sgi.com  
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USA MSC.Software www.mscsoftware.com  

USA DYNAMAX www.dynamax-inc.com  

USA AMD www.amd.com 

USA SE&CS www.schwer.net/SECS 

Educational Participants & Contributing Authors  

USA Dr. T. Belytschko Northwestern University 

USA Dr. D. Benson Univ. California – San Diego 

USA Dr. Bhavin V. Mehta Ohio University 

USA Dr. Taylan Altan The Ohio State U – ERC/NSM 

USA Prof. Ala Tabiei University of Cincinnati 

USA Tony Taylor Irvine Aerospace Inc. 

Russia Dr. Alexey I. Borovkov St. Petersburg State Tech. University 

Italy Prof. Gennaro Monacelli Prode – Elasis & Univ. of Napoli, 
Federico II 
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Special Announcements and Highlights of News Pages 

Posted on FEA Information and archived one month on the News Page 

January 5th LSTC On line registration available  

 MSC.Software Dytran 

 JRI Nike-Works 

 DYNAmore Distributor - Germany 

January 11th SGI SGI® AltixTM 

 ETA DYNAFORM pc 

 Altair – Italy Distributor - Italy 

January 18th Oasys Courses 

 HP Linux for HP workstations 

 Numerica Distributor - Italy 

January 26th  INTEL The Intel® Itanium® 2 processor 

 Fujitsu PRIMERGY 

 MSC.Software China Distributor China 

 

2004    

Mar 08-11  SAE 2004 World Congress & Exhibition - Detroit, MI 

May 2-3  
8th International LS-DYNA Users conference will again be held at the Hyatt 
Regency Dearborn, Fairlane Town Center, Dearborn, MI  hosted by LSTC 
and ETA  

May 10-12  OPTECH04, Optimization Technology Meeting 2004  

May 24-26  2004 ANSYS Users Conference and Exhibition to be held  in Pittsburgh, 
Pennsylvania, U.S.A.  
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First Time Available in a Bound Edition 
Limited Published Quantity 

Crashworthiness Engineering Course Notes 
Paul A. Du Bois 

 

 

This first edition will be available to purchase on line in two weeks.  To reserve a copy in advance 
contact Marsha Victory – vic@lstc.com  

Pricing Includes Shipping (US currency) : 

               US                          $ 75.00 

              International          $100.00 
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MSC.Software © Article reprint from website 
www.mscsoftware.com - Success Stories 

Durability Analysis Helps John Deere Cut Rotary Cutter Development Time in Half 

 

 

The implementation of durability analysis at John Deere Welland Works, 
Welland, Ontario, was one of the key factors in reducing development time for 
their rotary cutter systems. On the last two product generations, each design and 
test cycle was completed in one or two weeks using a virtual prototype instead of 
several months required by physical prototypes. As a result, development on a 20-

foot cutter was reduced from about two to four years and most recently to one year.  

One of the most time-consuming aspects of the cutter systems' development in the past was the lengthy 
process of building physical prototypes, testing them for durability, then redesigning several parts and 
starting all over again. In the last several years, Deere engineers have streamlined this process by building 
a virtual prototype of the entire cutter, including finite-element representations of the most fatigue-
sensitive components.  

Deere's virtual prototyping procedure mimics a physical durability test of its rotating drum. The virtual 
tests produce stress time-histories that are used by durability analysis software to make fatigue life 
predictions. These predictions have proven very accurate when compared to physical testing. "Using the 
new method, we have reduced the number of physical prototypes from three or four previously, down to 
two, and now one on our two most recent designs," said Terry Ewanochko, Product Engineer for John 
Deere Welland Works. "These time savings made a big contribution to the dramatic reductions in the 
development cycle on our latest products."  

The 15-foot and 20-foot Flex-Wing rotary cutters made by John Deere are used by farm operators, road 
side maintenance companies and municipalities for turf and grass mowing, 
pasture clipping, knocking down and shredding stalks and clearing out brush. For 
this heavy-duty work, the cutters must be extremely durable. The cutter assembly 
consists of three articulated sections, the center and two wings, as well as rotating 
cutting blade sets, and support wheels. The sectional design floats to follow the 
ground contour, allowing uniform cutting height on hilly terrains while preserving 
the full cutting width of 15 feet or 20 feet.  

For more convenient transporting the wings can be folded to reduce the width of 
the cutter. A tractor that provides a mechanical power take-off together with 
hydraulic lines tows the cutter. The power take-off drives the rotating cutters while the hydraulic lines 
drive the actuator cylinders that are used to control the cutter height and wing lift. The wings and center 
structure are fabricated using a double-deck steel plate construction concept. The center and wing axles, 
and lower hitch arm, are also fabricated. Continuous-seam and stitch welding provides extra strength for 
greater durability and provides manufacturing benefits over bolts and rivets.  

Previous design process  

Traditionally, Deere has relied upon a series of physical tests to ensure the survivability of these products 
when subjected to static and cyclic loadings. The most important is performed on a bump-test fixture, 
which simulates the jarring and twisting impact a cutter experiences when running over large bumps and 
rocks. The cutter is attached to a grounded drawbar while the wheels ride on rotating drums - one for the 
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center section and one for each of the wings. Triangular-shaped cleats attached to the drums are used to 
simulate bumps. "In the past, we had to keep building new prototypes and testing 
them on this fixture until we were satisfied with their life," Ewanochko said. "The 
problem was that prototypes are very expensive and take a long time to build and 
test. When we found problems with one or more major structural components we 
would have to redesign and rebuild the prototype, and start the testing again 
several times. This build-and-break process had to continue until the quality level 
was acceptable."  

 

 

Virtual prototyping method  

Deere engineers believed the process could be improved while they were creating several small 
component-level virtual prototyping models. "We hired MSC.Software Corporation as consultants to use 
their ADAMS (MSC.Adams) multibody simulation software to simulate the performance of several 
components," Ewanochko said. "We were impressed with the ability of the software to generate 
component-load profiles that can be used as input for fatigue analysis software. We decided to move to 
the next level by developing a prototype of the complete rotary cutter and modeling its performance on 
the bump test fixture."  

Utilizing the MSC.Adams/Durability product enabled complete integration of key virtual prototyping 
techniques such as finite element analysis, multi-body simulation, and fatigue life prediction. The initial 
MSC. Adams model of the cutter and test fixture was generated in the Pro/ENGINEER environment 
using the embedded product MSC.Adams MECHANISM/Pro. This software package is seamlessly 
integrated within Pro/ENGINEER, so the consultants were able to perform kinematics analysis to validate 
the model without leaving the CAD environment, then perform one-button transfer to MSC.Adams where 
full dynamic simulations were performed.  

MSC.Software engineers finalized the model by adding higher-fidelity features 
such as contacts, bushings, motions, couplers, and more complex joints for the 
bump test. The flexibility characteristics of the structural parts were modeled by 
generating finite element meshes of these components using Pro/MECHANICA 
and exporting them in the format used by ANSYS finite element software. 
ANSYS was then used to generate flexible body modal neutral files that contain 
the modal mass, stiffness, and deflection characteristics using a modal 
representation of the component. The orthonormalized modes, including static 
correction modes, were computed within ANSYS and then transferred to MSC.Adams, which modeled 
the flexible body deformations as a linear combination of mode shapes.  

The dynamic bump test was simulated in the virtual prototyping environment by first reaching static 
equilibrium for one second, then accelerating the drum operating speed. Using the full finite element 
models of critical components, Deere engineers obtained local stresses with the MSC.Adams solution. 
The mode shape participation factors were used as the scalars on the stress solution of each mode shape in 
a linear superposition to represent the component's instantaneous stress shape. This superposition was 
performed at every node in the finite element model for each time step in the simulation, making it 
possible to define a stress time-history at every location in the flexible component models. The modal 
coordinates, or scaling factor time-histories, were output from MSC.Adams for each component in a 
format that is directly readable by FE-Fatigue, a popular durability analysis software package from 
nCode. Also, the stress solution for each mode shape was solved in ANSYS and exported to FE-Fatigue. 
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FE-Fatigue then performed the stress superposition at every node for the purpose 
of life prediction. This involved automatic, multi-channel peak/valley extraction 
and rainflow cycle counting, followed by the damage sum.  

Results: time savings and design improvements  

"The results of the durability analysis showed good correlation with our physical 
test results on an initial prototype, giving us the confidence to predict service 

lives based on the virtual prototype simulation," Ewanochko said. "As a result, we integrated the virtual 
prototyping process midway into the development cycle of our new 20-foot rotary cutter and from the 
very beginning of our latest 15-foot rotary cutter. On the 20-foot cutter, we had already produced one 
physical prototype when we created the virtual one. After validating the virtual prototype against the 
physical prototype, we finalized the design with the virtual prototype, and only one more physical 
prototype was required to complete the design. Experimental testing of this prototype further verified the 
predictions that we had generated with the virtual prototype. The big advantage was that we completed 
each design and test cycle using the virtual prototype in only one or two weeks. This is compared to 
several months required in the past when we had to actually build the design in order to determine 
whether or not it would work. As a result of these improvements, and others in different areas of the 
design process, we were able to reduce the development on the 20-foot cutter to about two years. This was 
only half as much time as we had ever been able to do previously, based on the best time-compression 
techniques used in the past. On the 15-foot cutter, we used virtual prototyping from Day 1. As a result, we 
only needed one physical prototype and are on track to complete the design in only one year. 
Compressing the time cycle also meant that we were able to evaluate many more design concepts than we 
could in the past, including innovative approaches that we probably couldn't have spent the time and 
money to test in the past." 

 

MSC.Software Note: 
Excerpt from the website of MSC.Software 

MSC.Software Helps Chery Automobile Company Improve Vehicle Development with Virtual 
Product Development 

 
Emerging Chinese Automotive Company Turns to MSC.Software Professional Services Team for 
Vehicle Development Process Consulting 

 
SANTA ANA, Calif. - February 18, 2004 - MSC.Software Corp. (NYSE: MNS), …today announced a 
multi-phase, enterprise consulting services engagement with Chery Automobile Company Ltd. (Chery).  
…Chery is currently building an automotive engineering research institute (AERI) as the first phase of a 
long-term program for product line expansion. The services being provided by MSC.Software are linked 
to detailed planning and requirements for the new technical facilities….” 
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Abstract
This paper evaluates a Successive Response Surface Method (SRSM) specifically
developed for simulation-based design optimization, e.g. that of explicit nonlinear
dynamics in crashworthiness design. Linear response surfaces are constructed in a
subregion of the design space using a design of experiments approach with a D-optimal
experimental design. To converge to an optimum, a domain reduction scheme is utilized.
The scheme requires only one user-defined parameter, namely the size of the initial
subregion. During optimization, the size of this region is adapted using a move reversal
criterion to counter oscillation and a move distance criterion to gauge accuracy. To test its
robustness, the results using the method are compared to SQP results of a selection of the
well-known Hock and Schittkowski problems. Although convergence to a small tolerance
is slow when compared to SQP, the SRSM method does remarkably well for these
sometimes pathological analytical problems. The second test concerns three engineering
problems sampled from the nonlinear structural dynamics field to investigate the method’s
handling of numerical noise and non-linearity. It is shown that, despite its simplicity, the
SRSM method converges stably and is relatively insensitive to its only user-required input
parameter.

Keywords: Simulation-based optimization, response surface methodology, multipoint
approximations, design of experiments, crashworthiness.

Introduction
The success of finite element simulation to augment or even replace physical
experimentation in design has accelerated the development of simulation-based
optimization in recent years. While having its origins in the statistics of physical
experimentation, response surface methodology (RSM) (Box & Wilson, 1951, Myers and
Montgomery, 1995) has been the primary gradient-free simulation-based approach
available. The general unavailability of analytical gradient information in analysis codes
arises from the complexity of the non-linear finite element formulation. While not requiring
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any code enhancement, an alternative approach by means of finite differences may result in
spurious gradients, not suitable for gradient-based optimization. For these reasons, and
because of the noise-filtering properties of RSM, it has become particularly popular for
impact design applications such as crashworthiness or metal forming where the response
can be highly nonlinear.

As analysis methods for impact dynamics began to take hold in industry in the late eighties,
design optimization methods of impact design followed in the mid 1990’s. Among the
topics studied are occupant safety (Etman et al, 1996, Etman, 1997), component-level
optimization (Marklund, 1999, Akkerman et al, 2000), airbag-related parameter
identification (Stander, 2000) and full-vehicle simulation (Sobieszczanski-Sobieski et al,
2000). The response surface method appeared in several forms, e.g. a successive response
surface method (Toropov, 1989, Etman et al, 1996, Kok & Stander, 1999, Stander, 2001)
and an updated response surface method (Schramm & Thomas, 1998, Sobieszczanski-
Sobieski et al, 2000). Toropov (1989) experimented with linear and multiplicative
approximations for his iterative multipoint approximation method and applied weighted
least squares fitting and reduction of the subregion size based on function accuracy. In later
work, Toropov presented refinements of his method in the form of indicators for move limit
strategies. These criteria have been incorporated in a multipoint approximation strategy
known as MARS (Toropov, 1998). The methodology of Etman (1997) uses a successive
linear approximation approach with a saturated experimental design (n + 1 points, with n
the number of design variables) within a subregion of the design space. To determine the
location and size of each new subregion, a complex heuristic is used, based on oscillation,
the accuracy of the response surface and constraint activity. More recently, Sobieszczanski-
Sobieski et al (2000) conducted a full-vehicle simulation of a multidisciplinary nature while
using a single set of higher-order response surfaces. In a metal-forming application Kok &
Stander (1999) used a successive linear response surface method while Akkerman et al
(2000) demonstrated the use of a similar but slightly enhanced successive approximation
method to a knee bolster design with shape variables and involving transient mesh
adaptivity.

While these studies demonstrate optimization capability by means of examples, there
appears to be a dearth of studies that assess accuracy and robustness in design optimization
in nonlinear dynamics. Against this background, the present paper outlines a simple, dual
criterion successive response surface method (SRSM) that requires a single user-defined
parameter. Furthermore, a deeper investigation is conducted into the convergence
properties of the method (SRSM) as applied to a large set of algebraic test problems as well
as a smaller set of simulation-based problems. For the algebraic problems, the SRSM
method is compared to the more standard Successive Linear Programming (SLP) method
where both use the same adaptive domain reduction approach.

The motivation for the method proposed in the paper is derived from the requirements for
simulation-based optimization (Craig & Stander, 2001):
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1. Robustness and accuracy. In practical applications, it is important that the
optimization method produces an answer to engineering accuracy or at least an
immediate and significant improvement of the objective.

2. Efficiency. The number of expensive simulation-based function evaluations required
for each design iteration must be limited. Direct optimization methods without
approximations or evolutionary algorithms like the genetic algorithm are usually
disqualified due to the large number of function evaluations required.

3. Parallelization. To improve efficiency, modern simulations run on multiple
computers and/or processors. The optimization method must therefore be
parallelizable. This disqualifies e.g. sequential line searches.

4. Noise. The step-size dilemma of gradient-based methods must be addressed as this
impacts both robustness and efficiency. A noise filtering capability may avoid local
optima.

5. Infeasibility. The algorithm must be able to start from and handle intermediate
infeasible designs if they can be simulated. It must also be able to provide a best
compromised design if no feasible design is possible within the constraints
specified.

6. Global optimum. This requirement is probably the strictest of all those listed. If an
algorithm has features that at least provide the possibility of not terminating on the
first local optimum it finds, then this will be desirable in practical applications. The
study of true global optimization algorithms lies outside the scope of this paper.

7. Ease of use. The number of user-selected parameters must be kept to a minimum.

A method that successfully addresses most of these requirements is the Successive
Response Surface Method (SRSM) based on oscillation and move distance criteria and first
described in Stander (2001). This algorithm uses RSM (Myers & Montgomery, 1995), i.e. a
Design of Experiments approach, to construct linear response surfaces on a subregion from
a D-optimal subset of experiments. Linear functions are used to minimize the number of
simulations required, especially for a very large number of variables. Successive
subproblems are solved using a multi-start variant of the dynamic trajectory method,
LFOPC (Snyman, 2000). To select the optimum, multi-starts are performed from the
locations coinciding with the subset of experimental design points. The size of each
successive subregion is adapted based on contraction and panning parameters designed to
alleviate oscillation and prevent premature convergence. To prevent remote designs from
affecting the accuracy of the subregional optimum, simulation results from previous
iterations are not incorporated and each response surface is strictly based on the results of a
D-optimal experimental design within the current subregion. Infeasibility is handled
automatically when it occurs through the construction and solution of an auxiliary problem
to bring the design within the subregion if possible. The method handles noisy responses
automatically through the selection of an initially large subregion and a typically 50% over-
sampling of experiments in the implementation of the D-optimality criterion (Roux,
Stander & Haftka, 1998). As the optimum is approached, the subregion is contracted
automatically, implying that inaccuracies in the sensitivity information do not cause large
departures from the previous design. Therefore this handling of the step-size dilemma
(Haftka & Gürdal, 1990) also provides an inherent move limit to the algorithm. The use of
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an adaptive subregion or trust region is not new, e.g., in Lin et al (2000), Pérez et al (2000),
and Alexandrov et al (1997), the ratio of the simulated (actual) objective function reduction
to that of the approximated objective function reduction in each design step is used as a
measure to adjust the trust region size.

The SRSM method has proved itself to be robust but only moderately efficient if
convergence to a tight tolerance is required. The over-sampling required for each response
surface, although fully parallelizable, implies that it requires 50% more function
evaluations for each design iteration than the minimum required by gradient-based
algorithms. This method, although by no means a global optimization algorithm, may be
more likely to find a lower local optimum than local approximation (gradient) methods due
to its ‘wider’ perspective of the design space as embodied in the response surface.
However, experimentation with multi-start designs on suitable test problems is required to
verify this.

The aim of this study is also to illustrate that the SRSM method provides an accurate yet
efficient and robust optimization methodology to address both smooth and noisy
simulation-based problems. The test cases are therefore chosen accordingly and are
grouped in two main categories. The first is a random collection of analytical and
sometimes pathological problems from Hock & Schittkowski (1981) that are often used for
testing optimization algorithms. These examples possess reliable gradient information, so
one would expect a good local approximation method to perform well. The second category
contains simple but general structural optimization problems for testing the algorithm’s
ability to handle practical engineering problems. These are a nonlinear explicit dynamic
crash optimization problem of a simplified car, a material identification problem that
employs the nonlinear implicit analysis of a tensile test specimen, and an occupant
safety-related head impact problem. The problems in the second category exhibit various
degrees of noise and nonlinearity and are therefore ideal to demonstrate the handling of
these characteristics.

Methodology of Successive Response Surface Method (SRSM)
Consider the general nonlinear optimization problem:

Minimize f Rn( ) ,x x ∈ (1)

subject to the inequality constraints

mjUgL jjj ,,2,1;)( 2=≤≤ x (2)

and simple bounds on the design variables

nixxx iuiil ,,1; 2=≤≤ (3)
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where Lj and Uj refer to the upper and lower bounds on each of the inequality constraints,
and xil and xiu the lower and upper bounds on each of the design variables, n is the number
of design variables, and m the number of inequality constraints. Note that equality
constraints can be written as two inequality constraints in the form of Equation 2 with Lj

equal to Uj.

Refer to Roux, Stander & Haftka (1998) and Stander (2001) for a detail description of the
Successive Response Surface Method (SRSM). The method, as implemented in LS-OPT
(Stander, 1999), has a number of features that makes it robust and suitable for the solution
of practical problems:

• The D-optimal experimental design is used to best utilize the number of available
runs. Over-sampling of 50% is used to maximize the predictive capability (Roux,
Stander & Haftka, 1998) of the response surfaces.

• Linear approximations are constructed using linear regression on all the points of
the current iteration. Unit weighting is used for the regression.

• An adaptive domain reduction method is applied as described in detail below.
• An auxiliary problem that minimizes the maximum constraint violation is solved to

enforce feasible designs.

The SRSM method uses a region of interest, a subspace of the design space, to determine
an approximate optimum. A range is chosen for each variable to determine its initial size. A
new region of interest centers on each successive optimum. Progress is made by moving the
center of the region of interest as well as reducing its size. Figure 1 shows the possible
adaptation of the subregion.

The starting point )0(x will form the center point of the first region of interest. The lower
and upper bounds ),( 0,0, rR

i
rL
i xx of the initial subregion are calculated using the specified

initial range value )0(
ir so that

)0()0(0, 5.0 ii
rL
i rxx −= and nirxx ii

rU
i 2,15.0 )0()0(0, =+= (4)

where n is the number of design variables. The modification of the ranges on the variables
for the next iteration depends on the oscillatory nature of the solution and the accuracy of
the current optimum.

A contraction parameter γ is firstly determined based on whether the current and previous
designs )(kx and )1( −kx are on the opposite or the same side of the region of interest. Thus
an oscillation indicator c may be determined in iteration k as

)1()()( −= k
i

k
i

k
i ddc (5)
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where

[ ]1;1;;/2 )()1()()()()()( −∈−=∆∆= − k
i

k
i

k
i

k
i

k
i

k
i

k
i dxxxrxd (6)

The oscillation indicator (purposely omitting indices i and k) is normalized as ĉ where

)(ˆ csigncc = . (7)

The contraction parameter γ is then calculated as

2

)ˆ1()ˆ1( oscpan cc −++
=

γγ
γ . (8)

The parameter γosc is typically 0.5-0.7 representing shrinkage to dampen oscillation,
whereas γpan represents the pure panning case and therefore unity is typically chosen.

The accuracy is estimated using the proximity of the predicted optimum of the current
iteration to the starting (previous) design. The smaller the distance between the starting and
optimum designs, the more rapidly the region of interest will diminish in size. If the
solution is on the bound of the region of interest, the optimal point is estimated to be
beyond the region. Therefore a new subregion, which is centered on the current point, does
not change its size. This is called panning (Figure 1(a)). If the optimum point coincides
with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure
1(b)). Both panning and zooming may occur if there is partial movement (Figure 1(c)). The
range )1( +k

ir for the new subregion in the (k + 1)-th iteration is then determined by:

niterknirr k
ii

k
i ,,0;,,1;)()1( 22 ===+ λ (9)

where λi represents the contraction rate for each design variable. To determine λi,
)(k

id is

incorporated by scaling according to a zoom parameter η, typically 0.5, that represents pure
zooming and the contraction parameter γ to yield the contraction rate

)()( ηγηλ −+= k
ii d (10)

for each variable independently (see Figure 2). This criterion replaces function error and
feasibility-based criteria frequently employed in earlier response surface formulations
(Etman, 1997, Toropov, 1998).

For the Successive Linear Programming (SLP) method used for comparison in the results
section, linear response surfaces are constructed using the gradient at the current point. The
subregion is centered on this point while its adaptive properties are governed by the same
heuristics as the SRSM method.
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Test cases

The move limit heuristics of the SRSM and SLP methods are set to γpan = 1.0, γosc = 0.6 and
η = 0.6 for all the test cases below unless indicated otherwise.

Hock and Schittkowski problems
37 arbitrarily selected Hock problems and one problem from Svanberg (1995, 1999) are
used in this benchmark with the same starting designs being used for testing all the
algorithms. The problems are all analytical expressions with analytical gradients but the
gradients are computed numerically to emulate a simulation-based environment to align the
test with the thrust of this paper. Five of the problems (Nos. 2, 15, 16, 17, 20) are variations
of the Rosenbrock problem ( 2

1
22

12 )1()(100 xxxf −+−= ), while the number of design
variables ranges between 2 and 21. All the selected problems are constrained optimization
problems.

Small car crash problem
This problem (Figure 3) consists of a simplified vehicle moving at a constant velocity of
15.64m.s-1 (35mph) and impacting a rigid pole. The nonlinear finite element structural
solver LS-DYNA (LSTC, 2000) is used to perform a simulation of the crash using the
explicit dynamic analysis method. The simulation duration is 50ms. The objective is to
minimize the Head Injury Criterion (HIC) (NHTSA, 2000) over a 15ms interval of a
selected point subject to an intrusion constraint of 550mm of the pole into the vehicle at
50ms. This criterion is based on linear head acceleration and was designed to minimize
skull fracture/brain injury due to head contacts with the vehicle interior (NHTSA, 2000).
The design variables are the shell thickness of the car front (thood) and the shell thickness of
the bumper (tbumper).

Material identification problem (Müller, 2000)
In a material identification problem the optimization process uses experimentally measured
data to calibrate a constitutive model. A non-linear simulation is performed with the model
parameters as input, and the discrepancy of the simulated and measured results is used as a
minimization criterion. In this example, the parameters of a power-law material model of a
tensile test specimen are determined using the experimental reaction force, F and
elongation, u. The stress-strain history of the specimen (Figure 4) is simulated using LS-
DYNA (LSTC, 2000) and the objective is defined as the least-squares difference between
the simulated and measured force-elongation history. The design variables in this problem
are the two material parameters in the power-law model, as defined in Equation 11.

rp
yp

r
y KK )( εεεσ +== (11)

where ypε is the elastic strain to yield and pε is the effective plastic strain (logarithmic).

The strength coefficient, K and strain-hardening exponent, r are used as design variables.
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Head impact problem (Balasubramanyam, 2001)
This problem is outlined in Figure 5. Shown is a Free Motion Headform (FMH) impacting
the A-pillar of a vehicle covered on the interior with plastic trim. The aim of the
optimization is to reduce the Head Injury Criterion,

HIC-d = 166.4 + 0.75466*HIC (12)

(as measured at the FMH’s center of gravity) by modifying the trim design. The five design
variables used are the trim thickness, rib height and thickness, number of ribs and rib span
(distance between the first and last rib). Note that the inclusion of the number of ribs as a
design variable makes this an integer-based optimization problem. Adaptive meshing is
incorporated in the parameterization of the mesh through the TrueGrid (XYZ, 2000)
preprocessor to ensure good mesh quality for all possible designs. Note that this is an
unconstrained minimization problem as no limits are placed on e.g. the intrusion into the
trim or on the mass of the trim.

Results and discussion
Hock and Schittkowski problems
The results for the 38 problems are summarized in Tables I and II. The results obtained
using Powell’s Sequential Quadratic Programming (SQP) method as reported by Hock and
Schittkowski are given in Table I, while the results for the SRSM and SLP method are
given in Table II. n is the number of design variables.

Convergence is defined in terms of the objective function, with the number of iterations
required for 1% and 0.01% convergence given in Tables I and II. The error on the objective
is defined as

%100
1

*

×
+

−
=

act

act

err f

ff
f (13)

where actf is the exact objective function value (Hock, 1981) and *f is the computed

optimum.

For the SQP results, only final convergence values are available, and the iterations to this
final value and the error are given. Note that for each iteration, the objective function,
constraint function(s) (if present) and their gradients must be evaluated. SRSM employs
1.5(n + 1) + 1 D-optimal design points for each iteration, while the SLP method uses a
small finite-difference step size (10-6), therefore requiring only n + 1 evaluations for the
numerical gradient. For all the problems, unless otherwise indicated, the original subregion
is 25% of the design space in each variable. No problems other than those reported here
were attempted.
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The result of the twelve-corner polytope problem of Svanberg (1995, 1999) is also given in
Tables I and II. Svanberg listed the optimum as 280, found in about 150 iterations (50 outer
with about 3 inner iterations each) to an accuracy of 610− using the Method of Moving
Asymptotes (MMA) algorithm. Astonishingly, the SLP method finds this optimum to
within 210− in 7 and to within 410− in 8 iterations.

Summary of tabled results:
• The SQP method fails to find a local minimum in 2 of the 37 problems it was tested

on.
• The SRSM method fails to find a local minimum in 5 of the 38 problems with

modification to the default heuristics only required once for convergence.
• The SLP method fails to find a local minimum in 4 of the 38 problems.

For three of the problems where SQP and SLP failed to converge to the global optimum
(Problems 16, 33, and 63), SRSM performed better. E.g. for Problem 16, SRSM found the
optimum in 80 iterations, but only through the alteration of γpan in Equation 8 from the
default value of 1.0 to 1.2. This is the only such amendment in this study. The SQP method,
on the other hand, found the global optimum in Problems 13 and 20, while SRSM and SLP
converged to local minima. Both SQP and SLP found the correct optimum in Problem 15,
while SRSM converged to a local minimum. It should be emphasized that the results
presented are for a single starting design for each problem, and that the ability of some of
the algorithms to find the global optimum whilst others found local optima, is based on
chance.

Small car crash problem
The starting design and optimum design values of the small car crash problem are shown in
Table III together with the bounds on the design variables. Note that the initial design is
infeasible due to the violation of the intrusion constraint.

The optimization history for the small car crash problem is shown in Figure 6 for the
objective (HIC) and in Figure 7 for the design variables (thood and tbumper). The correct
minimal HIC-value is approximately 106 with zero violation of the intrusion. The effect of
the only parameter that the user must select in SRSM, the range of the initial subregion, is
also shown in Figure 6. It can be seen that the initial subregion size has an effect on the
initial convergence, but that the heuristics of the algorithm removes the influence of this
parameter by the 8th iteration, making it robust to this selection for this example.

The effect of the initial range is more pronounced on the history of the design variables (see
Figure 7), as the initial linear response approximation is less accurate for the larger ranges
(4 and 5mm). As soon as the zooming parameter is activated, the subregion becomes
smaller and the approximations more accurate, resulting in reduced oscillation in the design
variable values as convergence is approached.
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Figure 8 shows that simulation results and the response surface predictions converge by
about the fourth iteration for an initial range of 2.0mm. The comparison is interesting
because it shows the response surface accuracy and the degree of noise present in the
problem.

Material identification problem
The starting design and optimum design values of the material identification problem are
shown in Table IV together with the bounds on the design variables.

The optimization history for the design variables is given in Figure 9 as a function of the
initial range. It can be seen that although SRSM is sensitive to this parameter, the algorithm
is robust. The stable convergence rate can also be viewed in the objective function (least-
squares error) history plot in Figure 10.

Head impact problem
The starting design and optimum design values of the head impact problem are shown in
Table V together with the bounds on the design variables.

The objective function history is given in Figure 11. The solid line represents the result
interpolated from the response surface while the solid squares indicate the simulated
objective at the current design. As the optimization progresses, the difference between these
two diminishes due to the improvement in the approximation. Figure 11 also demonstrates
that although SRSM does not include an integer optimization method, it succeeds in the
present example in converging to a solution likely to be near an optimum. This example
seems to have more noise than the crash problem.

The initial and optimum designs are compared side by side in Figure 12. The reduction in
HIC-d is due to a more gradual deceleration of the Free Motion Headform (FMH) upon
impact. Figure 13 illustrates how the optimum design cushions the impact by removing the
peak in the acceleration curve.

Conclusions
A Successive Response Surface Method (SRSM), specifically tailored for simulation-based
optimization, was presented in this paper and tested on a variety of test cases.

The following conclusions can be drawn:
1. The SRSM method performed surprisingly well on the analytical test problems,

even though it only used linear approximations. Convergence was in general slower
than for SQP, but the contracting subregion helped the algorithm to move into close
proximity of the optimum. In general, progress to the region of the optimum is
rapid, followed by an expected slow convergence to a higher accuracy.

2. In the engineering test cases, the SRSM method exhibited stable convergence
characteristics and the robustness of the method proved to be insensitive to the
selection of the initial subregion size.
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3. In the final test case, SRSM was able to successfully include an integer variable in
the optimization process. Although the success rate of this application is not
evident, it is an indication that SRSM is able to deal with the noise induced by
approximating a continuous variable with an integer. A more rigorous approach
would be to conduct a discrete optimization of the approximate subproblem.

4. An SLP algorithm based on the same domain reduction scheme as SRSM proved to
be successful for coarse convergence although it is expected to be successful only
for smooth analytical problems.

Finally, the results in this paper demonstrate that, when considering coarse convergence
properties, the performance of the Successive Response Surface Method does not differ
dramatically from other, more established algorithms such as SQP. While the failure of
numerical gradient-based methods such as SQP is well documented for noisy problems, it
has been shown that SRSM has the potential of obtaining, with a reasonable degree of
accuracy and without experimentation with user-selected parameters, converged
optimization solutions to these problems. This makes the algorithm ideal for
multidisciplinary optimization problems in which multi-point approximations are suitably
constructed for noisy functions (e.g. from crash simulations) and analytical gradients are
available for smooth functions (e.g. modal frequencies).
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Figure 3 – Small car crash: geometry of deformed (50ms) and undeformed shape
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Figure 5 – Head impact problem: Design variables and trim deformation due to impact of
FMH

Rib height, thickness, number of
ribs, spacing between ribs

Trim thickness

Trim

FMH

A-Pillar

Trim

0 ms 7 ms



Stander, N. and Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-
based optimization, Eng. Comput., Vol. 19 (4), pp. 431-50, 2002

17

20

70

120

170

220

0 2 4 6 8 10 12 14 16 18 20

Iteration

H
IC

-5

0

5

10

15

20

25

30

In
tr

u
si

o
n

vi
o

la
ti

o
n

[m
m

]

HIC - Range 2.0mm HIC - Range 5.0mm

HIC - Range 4.0mm Intrusion violation - Range 2.0mm

Figure 6 – Small car crash: Optimization history of HIC and intrusion

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

Iteration

t b
u

m
p

er
[m

m
]

1

1.2

1.4

1.6

1.8

2

2.2

t h
o

o
d

[m
m

]

t_bumper (Range 2.0mm) t_bumper (Range 4.0mm)

t_bumper (Range 5.0mm) t_hood (Range 2.0mm)

t_hood (Range 4.0mm) t_hood (Range 5.0mm)

Figure 7 – Small car crash: Optimization history of thood and tbumper



Stander, N. and Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-
based optimization, Eng. Comput., Vol. 19 (4), pp. 431-50, 2002

18

40

60

80

100

120

140

160

180

0 5 10 15 20

Iteration number

H
IC

Computed

Predicted

Figure 8 – Small car crash: Optimization history of HIC — simulation results (dots) and
response surface results (line). Initial range = 2.0mm.

8.00E+08

9.00E+08

1.00E+09

1.10E+09

1.20E+09

1.30E+09

1.40E+09

0 2 4 6 8 10 12 14 16

Iteration

K
[P

a]

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

r

K (SRSM Range 0.325e9)

K (SRSM Range 0.5e9)

K (SRSM Range 1e9)

r (SRSM Range 0.325e9)

r (SRSM Range 0.5e9)

r (SRSM Range 1e9)

Figure 9 – Material Identification: Optimization history of design variables
as a function of initial range on K (range on r = 0.05)



Stander, N. and Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-
based optimization, Eng. Comput., Vol. 19 (4), pp. 431-50, 2002

19

0.001

0.01

0.1

1

10

0 1 2 3 4 5 6 7 8 9

Iteration

L
ea

st
-S

q
u

ar
es

E
rr

o
r

SRSM Range 0.325e9 SRSM Range 0.1e9

SRSM Range 0.5e9

Figure 10 – Material Identification: Optimization history of least-squares error for SRSM

Figure 11 – Objective function history for head impact problem. The squares represent
simulation results and the solid line the response surface interpolations at the predicted

optima after each iteration.



Stander, N. and Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-
based optimization, Eng. Comput., Vol. 19 (4), pp. 431-50, 2002

20

Figure 12 – Head impact problem: Initial and optimum trim designs

Figure 13 – Head impact problem: Initial (baseline) and
optimum FMH acceleration versus time
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SQPProblem # n fact

f* Niter ferr

2 2 0.0504 28.4 - -
10 2 -1 -1 12 5e-8
12 2 -30 -30 12 1e-8
13 2 1 1 45 5e-8
14 2 1.39 1.39 6 8e-9
15 2 307 307 5 1e-8
16 2 0.25 23.1+ - -
17 2 1 1 12 1e-8
20 2 38.2 38.2 20 5e-9
22 2 1 1 9 1e-8
23 2 9 9 7 1e-8
24 2 -1 -1 5 1e-8
26 3 0 0 19 4e-8
27 3 0.04 0. 04 25 2e-8
28 3 0 0 5 3e-21
29 3 -22.6 -22.6 13 9e-11
30 3 1 1 14 1e-8
31 3 6 6 10 1e-8
32 3 1 1 3 1e-8
33 3 -4.59 -4+ - -
36 3 -3300 -3300 4 1e-8
45 5 1 1 8 1e-8
52 5 5.33 5.33 8 6e-9
56 7 -3.46 -3.46 11 1e-8
60 3 0.0326 0.0326 9 3e-8
61 3 -144 -144 10 2e-8
63 3 952¥ 962+ - -
65 3 0.954 2.8 - -
71 4 17.0 17.0 5 2e-8
72 4 728 728 35 1e-8
76 4 -4.68 -4.68 6 3e-9
78 5 -2.92 -2.92 9 3e-9
80 5 0.0539 0.0539 7 8e-10
81 5 0.0539 0.0539 8 2e-9

104 8 3.95 3.95 19 8e-9
106 8 7050 7050 44 1e-5
108 9 -0.866 -0.697+ - -

12-corner polytope# 21 280 280 150 1e-6

Table I – Hock and Schittkowski problems (SQP): number of iterations Niter
corresponding to objective f* (error ferr and known optimum fact)

¥ SRSM found a lower optimum than that listed in Hock & Schittkowski (1981)
+ Converged to local optimum # Obtained by MMA (Svanberg 1995, 1999), not SQP
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SRSM SLPProblem # n fact

f* Niter
(1%)

Niter
(0.01%)

f* Niter
(1%)

Niter
(0.01%)

2 2 0.0504 6.55 - - 0.524 - -
10 2 -1 -1 13 18 -1 24 27
12 2 -30 -30 5 11 -30 5 7
13 2 1 0.76 - - 0.781 - -
14 2 1.39 1.39 9 13 1.39 4 5
15 2 307 360+ - - 306 5 -
16 2 0.25 0.25$ 68 79 23.1+ - -
17 2 1 1 8 11 1 6 6
20 2 38.2 40.2+ - - 40.2+ - -
22 2 1 1 8 12 1 5 5
23 2 9 9 13 18 9 1 2
24 2 -1 -1 2 2 -1 2 2
26 3 0 0 15 22 0 9 11
27 3 0.04 0.079 - - 0.072 - -
28 3 0 0 10 14 0 11 12
29 3 -22.6 -22.6 7 16 -22.6 5 9
30 3 1 1 9 10 1 9 12
31 3 6 6 8 15 6 8 11
32 3 1 1 1 1 1 2 2
33 3 -4.59 -4.59 4 9 -4+ - -
36 3 -3300 -3300 5 5 -3300 5 5
45 5 1 1 6 6 1 6 6
52 5 5.33 5.33 9 15 5.33 6 11
56 7 -3.46 -3.46 15 25 -3.46 10 12
60 3 0.0326 0.0326 11 15 0.0326 11 23
61 3 -144 -144 6 11 -144 4 6
63 3 952¥ 952 2 8 962+ - -
65 3 0.954 0.954 18 22 0.954 14 16
71 4 17.0 17.0 4 10 17.0 2 5
72 4 728 728 34 53 820+ - -
76 4 -4.68 -4.68 5 13 -4.68 3 8
78 5 -2.92 -2.92 20 28 -2.92 9 12
80 5 0.0539 0.0539 7 11 0.0539 1 6
81 5 0.0539 0.079 - - 0.0539 4 6
104 8 3.95 3.95 8 14 3.95 8 18
106 8 7050 7050 8 13 7049 4 5
108 9 -0.866 -0.866 27 32 -0.675+ - -

12-corner polytope 21 280 279 7 - 280 7 8

Table II – Hock and Schittkowski problems: number of iterations (Niter) corresponding to
objective f* (SRSM and SLP)

$ γpan = 1.2 + Converged to local optimum
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¥ SRSM found a lower optimum than that listed in Hock & Schittkowski (1981)

Minimum Initial Maximum Optimum
thood [mm] 1 1 6 1.51
tbumper [mm] 1 3 6 5.85
HIC 68.33 106.78
Intrusion violation [mm] 24.34 0

Table III – Small car crash: Design variable upper and lower bounds; initial and optimum
values of objective, design variables and constraint

Minimum Initial Maximum Optimum
K [GPa] 0.7 1 2 1.23865
r [-] 0.01 0.1 0.2 0.106726

Table IV – Material Identification: Design variable upper and lower bounds;
initial and optimum values of design variables

Minimum Initial Maximum Optimum
Trim thickness [mm] 2 2.9
Rib thickness [mm] 0.8 1 1.8 0.8
Rib height [mm] 6 6 15 6.5
Number of ribs [-] 4 4 16 11
Rib span [mm] 130 180 180 140
HIC-d 1400 482

Table V – Head Impact Problem: Design variable upper and lower bounds;
initial and optimum design values of objective and design variables
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