

FEA Information Engineering Solutions

Volume 1, Issue 9, October 2012

Inside This Issue Upgrade Your Windows Workstation To LS-DYNA® SMP Unfolding flanges – Sheet Metal Forming Matereality 6.0 Release

LS-DYNA® SMP Upgrade Your Windows Workstation To LS-DYNA® SMP

Special Price for LS-DYNA[®] SMP Version for Windows Workstations

Offering An SMP license only,

- Restricted to SMP versions (LS-DYNA MPP is not included)
 - $\circ~$ Workstation versions of Microsoft Windows $^{\ensuremath{\mathbb{R}}}$. XP and later.
 - o Does NOT include server versions
- Executable is node locked to a single user workstation.
- Simultaneous jobs allowed, up to a total in-use core count of 16.

Offering includes:

- Pre- and Postprocessor LS-PrePost®
- Optimization Software: LS-OPT[®] and LS-TaSc[™]
- · LSTC dummy and barrier models
- All Features of LS-DYNA[®] are included: Explicit, Implicit, CFD, Thermal,...

For Information: Livermore Software Technology Corporation 7374 Las Positas Rd, Livermore, CA 94550, US

www.lstc.com sales@lstc.com

FEA Information Inc. is a publishing company founded April 2000, incorporated in the State of California July 2000, and first published October 2000. The initial publication, FEA Information News continues today as FEA Information Engineering Solutions. The publication's aim and scope is to continue publishing technical solutions and information, for the engineering community.

FEA Information Inc. Publishes:

FEA Information Engineering Solutions

FEA Information Engineering Journal

FEA Information China Engineering Solutions

FEA Information Engineering Solutions:

A monthly publication in pdf format sent via e-mail, additionally archived on the website FEA Publications. <u>www.feapublications.com</u>

FEA Information China Engineering Solutions

The first edition was published February 2012. It is published in Simplified and Traditional Chinese in pdf format. Published : February, April, June, August, October, December. The China Solutions is archived on the website FEA Publications. <u>www.feapublications.com</u> To sign up for the Traditional, or Simplified edition write to <u>yanhua@feainformation.com</u>

FEA Information Engineering Journal: ISSN #2167-1273, first published February, 2012 Available on <u>www.feaiej.com</u>

Issues Now	Volume 1	Volume 1	Volume 1	Volume 1	Volume 1
On Line	Issue 1	Issue 2	Issue 3	Issue 4	Issue 5
	February 2012	March 2012	April 2012	May 2012	June 2012
	Compilation	Metal Forming	FSI	Aerospace	Electromagnetics
Volume 1	Volume 1	Volume 1	Volume 1		
Issue 6	Issue 7	Issue 8	Issue 9		
July 2012	August 2012	Sept. 2012	Oct. 2012		
Blast & Impact	Constitutive	Optimization	Simulation		
	Modeling				

Platinum Participants

en www.esi-group.com

<u>www.oasys-</u> software.com/dyna/en/

Table of Contents

	LS-DYNA SMP Upgrade Your Windows Workstation
3	FEA Information Profile
4	Global Solution Leaders
5	Table of Contents
6	Announcements
7	Sheet Metal Forming - Unfolding of Flanges
12	TopCrunch - Benchmarks - LS-DYNA
13	d3View
14	LS-DYNA Support Site
15	OASYS UK Users' Meeting 2013
17	DynaAS+ LS-DYNA Distributor Showcase for Distribution in France
18	Matereality's 6.0 Release
20	IU to Acquire Nation's Fastest University-Owned Supercomputer (Cray)
23	Gompute Cloud Service for LS-DYNA®

SECTIONS

Participant Solutions

BETA CAE, Cray, ETA, ESI Group, GNS, Gridcore AB,

Datapoint Labs, JSOL, LSTC, Oasys Ltd., Shanghai Hengstar

Distribution – Consulting – Cloud Services

Distribution, Consulting,

Cloud Services for LS-DYNA and other software

Training Courses

Training Courses

Events

Global Events

Social Media – Participant Information

Face Book - Twitter - LinkedIn - News Feeds

Library

Announcements FEA Information Engineering Solutions Announcements

2013 Events and Training Courses

Now being accepted for publication. Send your information to Anthony Giaccana <u>agiac99@aol.com</u>

FEA Information Engineering Solutions Mandarin and Simplified Chinese

Sent this month by Yanhua Zhao To be added to her mailing list contact <u>yanhua@feainformation.com</u> To advertise in this magazine contact: <u>yanhua@feainformation.com</u>

Software Offering:

Don't miss the information on the inside cover LSTC's SMP Version

Main Article

Xinhai Zhu and Li Zhang of LSTC, Sheet Metal Forming. Additionally, this can be read in Chinese – if you have friends that are in China have them contact <u>yanhua@feainformation.com</u>

The Journal for October

Dedicated to papers on Simulation

Sincerely, Marsha Victory, Trent Eggleston, FEA Information

Xinhai Zhu, Li Zhang

LSTC

INTRODUCTION

Unfolding of flanges is one of the first steps in a stamping die development process. Immediately after tipping, binder and addendums are built for unfolding of flanges. According to process considerations (trim, draw depth, and material utilization, etc.), these addendum are built either in parallel, or perpendicular to the draw die axis, or they can be built tangentially off the main surface, or any combinations of the three scenarios. Trim lines are developed by unfolding the flanges in finished (hemmed or flanged) position onto these addendums. Addendums length in some areas may have to be adjusted to accommodate the unfolded trim lines.

Trim line development is very critical in hard tool development. Inaccurate trim lines lead to trim die rework, amount to hours and hours of welding, re-machining and spotting of trim die components. Up until recently, there is no flange unfolding capability existed in LS-DYNA^O. A major development effort produced a new keyword *CONTROL_IMPLICIT_UNFLANGING, enabling LS-DYNA users to conduct an 'unflanging' simulation within the software. This is a multi-step implicit static method, and detailed descriptions of the keyword can be found in the draft version of the keyword manual link: ftp://user:computer@ftp.lstc.com/manuals/DRAFT

MAIN FEATURES

The inputs to the keyword are:

- Flanges in flanged or hemmed position portions of the flanges may overlap the addendum or main part surface, and these areas of the flange meshes are constrained automatically with the variable DIST. DIST is typically set as little more than ¹/₂ of the flange thickness.
- Addendum surface meshes the addendum surfaces must be large enough to contain the unfolded flanges in unflanged shape. Addendum meshes can be meshes used to describe the tooling mesh. Tooling mesh can be created in *LS-PrePost* under menu option *Mesh/AutoM/Deviation*.

Sheet Metal Forming

- 3) SPC tolerances to automatically fix unmoving portion of the flanges this is done through the use of the variable DIST.
- 4) Solution control variables estimated number of unbending, ranging from 10-100; unflanging and normal stiffness, ranging from 0.1-10.0; iteration limit for the first phase of unflanging, typically at 400.
- 5) Additional implicit control cards this keyword is used in conjunction with option 1 of the *CONTROL_IMPLICIT_FORMING. Termination is determined by DELTAU in *CONTROL_IMPLICIT_TERMINATION, typically between 0.0005 and 0.001. An initial step size is typically 0.1 specified using *CONTROL_IMPLICIT_GENERAL. Termination "time" is usually given as 100.0 in *CONTROL_TERMINATION, sufficient in most cases.

The outputs of the simulation are unfolded flanges, and therefore, trim lines, in D3PLOT files. Since this is an implicit method, fully integrated shells are recommended. Deformable flange should have reasonably shaped elements, as one usually would do for a sheet blank. This kind of mesh can be constructed using *Size* method in *Mesh/AutoM* in LS-PrePost. Flanges and tools must not share the same nodes – this is easily done with *Detach Element* function in LS-PrePost. The flange unfolding direction is determined by the normals of the flanges and tool surfaces. The normals of to-be-unfolded flange side and the tool surface must point at each other. Contact is modeled with one-way forming type. Adaptive mesh may be supported in the future. Double precision executable is required.

Figure 1 below shows unfolding of an undercut flange. The deformable flange is unfolded onto a flat tool surface (rigid). This example tests the keyword capability in handling of multiple unbends and undercut scenario. Flange edge lengths before and after unfolding are reasonable. The computing is very fast, as shown in Table 1, where model and CPU time are listed.

Figure 1 Unfolding of an undercut flange.

Sheet Metal Forming

Figure 2 shows unfolding of a hemmed flange around an automotive door corner. This example verifies the keyword capability in dealing with a near 180 degree unfolding. The unfolding will be a first step in simulating a flanging and hemming process, where accurate starting position and shape of a flange is needed. Flange lengths before and after unfolding are compared and deemed reasonable. The computing had no difficulty, and is very fast, as shown in Table 1 on the next page.

Edge length before unfolding: 7.54mm

Edge length after unfolding: 7.55mm

Figure 2 Unfolding a hemmed flange of a door corner.

Sheet Metal Forming

Flange Un-folding

Sheet Metal Forming

	#Flange element	# Tool element	# of implicit steps	Computing time (sec) on 8 CPUs, SMP
Undercut flange	1386	1196	158	50
Door corner	203	2424	101	19

Table 1. Model and CPU information

A more production intent example can be found in the keyword manual.

DISCUSSION/CONCLUSION

Unfolding of flanges and hemmed flanges is a very important step in stamping process and process simulation. This is now possible with the new keyword *CONTROL_FORMING_UNFLANGING. The new keyword is robust, reliable and fast. Future enhancements include handing of the adaptive meshes and input simplification.

TopCrunch

Initiated to track the aggregate performance trends of high performance computer systems and engineering software.

Instead of using a synthetic benchmark, actual engineering software applications are used with real data and are run on high performance computer systems.

Vendor/Submitter Org.:	SGI®/HPC Applications Support
Submitted:	10/07/2012
Computer/Interconnect:	SGI® Rackable CH-C2112 cluster/IB QDR
Processor:	Intel® Xeon® E5-2670 @2.60GHz Turbo Enabled
Submission Date:	October 07, 2012

#Nodes x #Processors per Node x #Cores	Time (Sec)	Benchmark Problem
Per Processor = Total #CPU		
64 x 2 x 8 = 1024	1887	car2car
32 x 2 x 8 = 512	431	3 Vehicle Collision
16 x 2 x 8 = 256	60	neon_refined_revised

d3VIEW Blog

LS-DYNA and d3VIEW Blog

http://blog.d3view.com/

MPP LS-DYNA Intermittent Profiling Information Posted on September 26, 2012 by Suri Bala

During MPP LS-DYNA execution, often there is a need to know how each of the "threads" are doing in terms of overal CPU utilization. Until now, one has to wait till the job is fully finished so we can review the load-balance information from the main D3HSP file.

From LS-DYNA 971 r7 onwards, there is now a new "sense-switch" control named "prof" that can be now used to output CPU utilization while the job is running. This is a great feature to probe long-running jobs and to ensure that the run is performing well.

The feature was added by Dr. Jason Wang in MPP LS-DYNA

PS: You can also review "Time per zone Cycle" in the main-processor's GLSTAT file to review the CPU utilization but may not provide a complete picture of how the slave "threads" are doing.

lpri	toggle	implicit 1	lin. alg.	solver	output of	n/off
nlpr	toggle	implicit r	onlinear	solver	output of	n/off
iter	toggle	implicit o	output to	d3iter	database	on/off
prof	output	timing dat	to messa	ige file	and cont	tinue

Support Site

http://www.dynasupport.com/

The LS-DYNA support site

At this site you will find answers to basic and advanced questions that might occur while using LS-DYNA. Furthermore it will provide information about new releases and ongoing developments. The content will be regularly updated with answers to frequent questions related to LS-DYNA.

LS-DYNA

LS-DYNAsupport will not provide information on activities of your local LS-DYNA distributor as seminars, promotions, etc. We may ask to check the local sites for any kind of non-technical information.

Recent Changes - please visit the site for the pdf files.

October 25th Install a new network license (Microsoft Windows)

October 23 Material model for TRIP-steels

October 23

The tension test

October 23

A pathological case of volume locking in triangular elements

October 23 History Variables for certain material

models

.

Support Site

LS-DYNA Users' Meeting

OASYS

LS-DYNA Users' Meeting

Oasys LS-DYNA UK Users' Meeting 2013

Wednesday 16th January 2013

The tenth in a series of update meetings for Oasys LS-DYNA Users will be held at our office in Solihull on Wednesday 16th January 2013.

Please note: The Meeting will run as a half day event this year with registration commencing at 1:30pm. The decision to shorten the event was taken as the European LS-DYNA Conference is also running in the UK in 2013.

As in previous years this event will bring together around 80 users of the Oasys and LS-DYNA software to provide information on upcoming features of Oasys and LS-DYNA, and to learn more about current and new applications, as well as other related software products.

We are looking forward to talks from Yun Huang (LSTC) and the Oasys team at Arup.

The event will be followed by a complimentary meal at The Boot Inn in Lapworth. Please ensure you register in advance to attend this evening meal.

Registration

This event is free of charge. To register for the event and the evening meal simply send an email with your company/affiliation and contact details to Katherine Groves <u>katherine.groves@arup.com</u>. Please also let us know if you have any particular dietary requirements when you register.

Please note: in line with our company sustainability policy we do not plan to provide printed copies of the presentations for each attendee at the event; the presentations will be made available to download after the event. If you particularly require a printed copy on the day please let us know when you register.

LS-DYNA Users' Meeting

OASYS

LS-DYNA Users' Meeting

Agenda

http://www.oasys-

software.com/dyna/en/events/users_jan-13/Provisional%20Agenda%20Oasys%20LS-DYNA%20Users%20Meeting%202013.pdf

A provisional agenda for the day available. These details will be confirmed closer to the event date.

Training Courses

The following training courses are provisionally scheduled around the time of the Oasys LS-DYNA UK Users' Meeting:

Thur 17th - Fri 18th Jan NHV & Frequency Domain Anaylsis in LS-DYNA

The course costs listed above are per attendee and do not include VAT or any travel / accommodation expenses. For more details please follow the link to the course page.

Venue

The event will be held at The Arup Campus, Blythe Valley Park, Solihull, B90 8AE. Blythe Valley Park is located at junction 4 of the M42; please click here for a PDF map. Details for public transport to the Blythe Valley Park can be found on the Blythe Valley Park website.

Meal after the event

The meal following the event will be held at The Boot Inn, Old Warwick Road, Lapworth, B94 6JU. The size of the restaurant is limited so please ensure you confirm to us that you plan to attend to avoid disappointment on the night. For a detailed map of the location please click here.

Contact Details

If you would like more information on this event please contact:

Katherine Groves Oasys LS-DYNA Project Administrator, Arup T +44 (0) 121 213 3291 E katherine.groves@arup.com

LS-DYNA Distributor

Fr<u>ance</u>

LS-DYNA Distributor

Participant Distributor Showcase

For information on the latest offering LS-DYNA SMP – Upgrade Your Winows Workstation contact Vincent LAPOUJADE - <u>v.lapoujade@dynasplus.com</u>

Accueil Activités Simulati	ion Produits Modèles	Formation Recrutement C	ontact & Liens			
Produits	Dunke, a find day surgers					
+ LS-DYNA	SYSTEMS, permettant de pr	oposer une offre complète autour de la sim	ulation en dynamique rapide. Ces partenaria			
+ LS-PrePost	permettent à DynAS+ de se	positionner comme un acteur important en	France dans le domaine de la simulation			
+ LS-OPT	appliquee a la conception die	appliquée à la conception d'éléments industriels.				
+ LS-TaSC	DynAS+ est distributeur fran	nçais des gammes de produits de trois soci	étés :			
+ ETA / DYNAFORM						
+ T-SYSTEMS / MEDINA	LSTC	ETA	T-SYSTEMS			
Offre Education	· LS-DYNA,	 INVENTIUM/PreSys, 	 MEDINA, 			
	LS-PrePost; LS-TaSC	 eta/DYNAFORM, eta/VPG 	 MEDINA/SDM. 			
Nous contacter	· LS-OPT.					
Postes à pourvoir	DynAS+ fournit des prestation	ons à forte valeur ajoutée autour de ces so	lutions.			
Liens						

Vincent LAPOUJADE leads a team of engineers and staff, in technical support, sales, and consulting, for LS-DYNA. He has been dedicated to LSTC's suite of software products for many years, and a long standing alliance with LSTC. Among Vincent's and DynAS+ objectives are to concentrate knowhow and expertise to satisfy the customers in France.

2013 will have special emphasis on training courses for the new features in LS-DYNA.

For information on pricing, demonstration license, SMP Offering, or future training contact: Vincent LAPOUJADE - <u>v.lapoujade@dynasplus.com</u> <u>www.dynasplus.com</u>

Release

Matereality releases new app suite for product development and material data management Press Release October 18th, 2012: Ithaca, NY

Matereality's 6.0 Release features a redesigned user interface with a new applications suite now compatible with mobile devices. The company continues to drive innovation to allow engineers to find, understand and use traceable material data for new product development. Matereality delighted CAE analysts when it released its acclaimed CAE Modelers in 2010. They have proven to be incredible time savers for engineers, letting them perform the oftencomplex conversions to create CAE material cards in a predictable manner. With 6.0, a new Material Model Library app lets them catalog and store their material cards alongside their raw material data.

Release 6 encourages companies to transition to material databases that provide core value to their product engineering teams. These are dedicated databases that contain highly relevant measured properties of the actual materials used in their products. "In today's analysis-led design (ALD) environment, where major design decisions are based on the outcomes of CAE, using material data of unknown origins has long term consequences. Over the past 5 years we have seen companies invest in dedicated databases, from our vantage as the source for material data to over 800 manufacturing companies", says Hubert Lobo, who runs both DatapointLabs and Matereality.

The new interface moves away from traditional website navigation with app based software tailored to diverse user types. GridView lets navigate their personal database. users workgroup database or an entire enterprise database. Data administrators use the Manage app. Test engineers and librarians can use the Load Data app to add material data to their database. With Smart MouseOvers, the user can preview pertinent data including properties, analytics and models before diving into a dataset. The iPad-ready DataViewer enhances the user experience for visualization of complex material data with instant graphing of digital data, unit conversions and enhanced Excel connectivity. "We have engineers from over 450 product development teams using our cloud. We are excited to enable faster access to material data and software applications right at log in. This will allow a wide cross-section of users to adopt a common platform that feels like it has been designed specifically for them", says Paul Klinger, Sales Director, Matereality.

Release

The Matereality cloud today contains over 50,000 experimental datasets on over 8,000 materials, comprising one of the largest collections of design properties in the world today. While the content is primarily intended for internal use by corporate design groups, selective sharing is possible to allow collaboration between colleagues or companies cooperating on a development program. A material supplier may, for example, exclusively share its privately held high strain rate tensile properties for crash simulation with an automaker's design team using Matereality. Such 'social' interaction can enable data starved design groups to have access to high-value product-relevant material data while often enabling a sale for the supplier. Free databases are also exposed, creating pathways to connect design teams to additional material data from pedigreed sources.

About Matereality

Matereality, L.L.C., based in the United States, operates private and public cloud material databases for use in product design and manufacturing. Matereality's ready-for-

deployment patented technology provides material databases and solutions for different needs, budgets and company sizes: a Personal Database for one user, a WorkGroup for up to twenty users, or a Material Data Server for a large manufacturing enterprise. Each database can collect and store any properties of any materials. All databases are empowered by a suite of web-based software that allows users work to with material data, for trend visualization, CAE modeling and database building. Support services include material data loading and material testing to populate the database with accurate data. The company a diverse user base including serves automotive. appliance. tier-one. material suppliers and processors, electronics, mold makers, medical devices, and consumer product verticals.

For more information, visit www.matereality.com email to info@matereality.com

telephone 607-257-1784 95 Brown Rd. #102, Ithaca, NY 14850. Cray XK

Supercomputer http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-newsArticle&ID=1743321&highlight=

IU to Acquire Nation's Fastest University-Owned Supercomputer Oct 09, 2012 --

Indiana University and Cray Inc. (NASDAQ: CRAY) announced today that the university plans to replace its largest supercomputer system, Big Red, with the fastest universityowned supercomputer in the nation. Named Big Red II, the next-generation Cray XK supercomputer will be capable of one thousand trillion floating-point operations per second, or one petaFLOPS.

Big Red II will be developed and deployed through a joint effort between Cray and IU to provide an innovative supercomputer that advances research particularly in areas related to big data. The system will combine the longstanding leadership of Crav supercomputers and IU-developed technology for movement, management and analysis of massive data sets. The university plans to install the new system in its state-of-the-art data center in spring 2013.

"IU's new Cray supercomputer will ensure we stay at the forefront of the use of high-speed and data-intensive computation in some of the most vital and complex research in the world, and the decision to acquire the fastest university-owned supercomputer is the latest evidence of how important the highest speed computation is to our researchers and

scientists," IU President Michael A. McRobbie said. "It has enabled them to obtain extensive funding for their research that they would not otherwise been able to get and has enabled them to continue to stay at the leading edge of their disciplines.

Crav XK

"Big Red II will accelerate discovery and allow new research by hundreds of IU scientists and scholars right across the university including in medicine, biology, physics. chemistry. network science, sustainability astronomy, science, global climate research, public health, and, of course, informatics and computer science. It will also play a major role in the recruitment of new faculty in these and other areas who will make use of Big Red II and its huge data processing capabilities."

The new system will be unique among supercomputers owned by U.S. universities. The new Cray will have more than 21,000 processor cores, high-performance GPUs, and an extremely fast Cray Gemini Interconnect. It will include the newest NVIDIA GPU accelerators and the latest AMD processors with 16 cores each. Big Red II represents a substantial capability leap forward for IU over Big Red's 4,100 cores.

"We are excited and honored that Indiana University has selected a Cray supercomputer to become the next Big Red system," said Peter Ungaro, president and CEO of Cray Inc. "The university is widely known as a leader in the academic circles of high performance forward computing, and we look to collaborating with IU and providing their researchers, scientists and students with the unique performance and capability found only in a Cray."

"Big Red II is the next step in executing IU's strategic IT plans in support of the university," said Brad Wheeler, IU vice president for information technology and CIO. "Using the original Big Red, IU researchers have secured more than \$253 million in grant funding, and we foresee a similar positive impact being made by Big Red II. The key importance of these systems has been in the discoveries they have enabled, represented in thousands of published papers produced by the IU scientists who have used them. Big Red has been an extraordinary value for IU over its almost seven years of service, and the frontiers with Big Red II will be even more expansive."

Andrew Saykin is one of many IU researchers whose important work will be aided by the new supercomputer.

"Data sets of unprecedented scope can facilitate new discoveries regarding the brain, genome, disease and therapies but computational power has become a major bottleneck to scientific progress," said Saykin, Raymond C. Beeler Professor of Radiology at the IU School of Medicine and director of the IU Center for Neuroimaging. "To analyze the entire human genome in relation to longitudinal changes on brain MRI and PET scans in over 800 individuals. we need significantly more computing power than is available today. This new supercomputer is an exciting development that will undoubtedly enable new discoveries by many investigators at IU and beyond."

IU's Pervasive Technology Institute (PTI) leaders already have plans for using Big Red II to develop new techniques and tools, including Beth Plale, PTI managing director and director of IU's Data to Insight Center; Andrew Lumsdaine (director) and Thomas Sterling (chief scientist and associate director) of IU's Center for Research in Extreme Scale Technologies; and Geoffrey C. Fox, director of IU's Digital Science Center. "Cray's leading capabilities for petaFLOPS systems, PTI innovations that create new software tools, and IU Research Technologies' ability to provide university-wide support to all disciplines are a highly unique combination that will accelerate many frontiers of research," said Craig Stewart, PTI executive director and associate dean of research technologies. "This is a first in my more than three decades of work on research technologies."

The original Big Red, which was the fastest university-owned system of its kind when it was installed in 2006, is now considered old by supercomputer standards. In fact, when it is retired in early 2013 it will have outlasted the typical operating lifespan for a supercomputer by more than two years.

Through the years, IU has made significant investments in its high performance computing resources, resulting in a number of "firsts." For example, in 2001, IU's Research SP was the first university-owned supercomputer capable of 1 teraflops processing capability; in 2003, IU achieved the first distributed Linux cluster achieving more than 1 teraflops on standard benchmark applications; and in 2006 Big Red was the fastest academic supercomputer in the United States.

This partnership with Cray resulted from a thorough competitive bid process. IU and Cray expect to finalize the last details of the contract within the next few weeks, and Big Red II will use IU's high-speed Lustre file system, based on DDN storage hardware.

About Cray Inc. - As a global leader in supercomputing, Cray provides highly advanced supercomputers and world-class services and support to government, industry and academia. Cray technology is designed to enable scientists and engineers to achieve remarkable breakthroughs by accelerating performance, improving efficiency and extending the capabilities of their most demanding applications. Cray's Adaptive Supercomputing vision is focused on delivering innovative next-generation products that integrate technologies into diverse processing а unified architecture, allowing customers to surpass today's limitations and meeting the market's continued demand for realized performance. Go to www.cray.com for more information.

(...Safe Harbor Statement: This press release contains forward-looking statements within the meaning of Section 21E of the Securities Exchange Act of 1934 and Section 27A of the Securities Act of 1933, including, but not limited to, statements related to Cray's ability to finalize a contract with IU when and on the terms expected and Cray's ability to deliver the system to IU when..."

"...About PTI: The mission of the Indiana University Pervasive Technology Institute (PTI) is to improve the quality of life in the state of Indiana..."

Cray is a registered trademark of Cray Inc. in the United States and other countries, and Cray XK is a trademark of Cray Inc. Other product and service names mentioned herein are the trademarks of their respective owners.

IU Media Contact: Ceci Jones Schrock Indiana University Office of the Vice President for Information Technology and CIO <u>ccjones@indiana.edu</u> (812) 856-2337 Cray Media Contact: Nick Davis <u>pr@cray.com</u> (206) 701-2123

Gompute also provides independent software vendors (ISVs) with a faster time to market by reselling their products on-demand. Users of Gompute range from large corporations to one-man consultant companies. Gompute's own technology allows the establishment of Virtual teams who can share resources and results collaboratively.

Gompute provides: CPU hours, storage, system administration and support for applications provided by third party Gompute partners.

Gompute supports: departmental license servers, simulation database repository, common documentation areas, etc.

Imperial Business Park, 4819 Emperor Boulevard, Suite 400, Durham, NC. 27703 USA.

Contact: info@gompute.com

www.gompute.com

BETA CAE Systems S.A.

www.beta-cae.gr

BETA CAE Systems S.A.– ANSA

Is an advanced multidisciplinary CAE pre-processing tool that provides all the necessary functionality for full-model build up, from CAD data to ready-torun solver input file, in a single integrated environment. ANSA is a full product modeler for LS-DYNA, with integrated Data Management and Process Automation. ANSA can also be directly coupled with LS-OPT of LSTC to provide an integrated solution in the field of optimization.

BETA CAE Systems S.A.- µETA

Is a multi-purpose post-processor meeting diverging needs from various CAE disciplines. It owes its success to its impressive performance, innovative features and capabilities of interaction between animations, plots, videos, reports and other objects. It offers extensive support and handling of LS-DYNA 2D and 3D results, including those compressed with SCAI's FEMZIP software

CRAY

http://www.cray.com/Products/Products.aspx

The Cray XK6

The Cray XK6 supercomputer combines Cray's proven Gemini interconnect, AMD's leading multi-core NVIDIA's scalar processors and powerful many-core GPU processors to create a true, productive hybrid supercomputer

Cray XE6[™] and Cray XE6m[™] Supercomputers

The Cray XE6 scalable supercomputer is engineered to meet the demanding needs of capability-class HPC applications. The Cray XE6m is optimized to support scalable workloads in the midrange market.

Cray XMT[™] System YarcData uRiKA[™] Graph Appliance

The YarcData uRiKA graph appliance is a purpose built solution for Big Data

www.cray.com

relationship analytics. uRiKA enables enterprises to discover unknown and hidden relationships in Big Data, perform real-time analytics on Big Data graph problems, and realize rapid time to value on Big Data solutions.

The uRiKA graph appliance complements an existing data warehouse or Hadoop cluster.

Cray Sonexion 1300[™] Storage System

The Cray Sonexion 1300 system is an integrated, high performance storage system that features next-generation modular technology to maximize the performance and capacity scaling capabilities of the Lustre file system.

Cray also offers custom and third-party storage and data management solutions

DatapointLabs

www.datapointlabs.com

Testing over 1000 materials per year for a wide range of physical properties, DatapointLabs is a center of excellence providing global support to industries engaged in new product development and R&D.

The compary meets the material property needs of CAE/FEA analysts, with a specialized product line, TestPaks®, which allow CAE analysts to easily order material testing for the calibration of over 100 different material models.

DatapointLabs maintains a world-class testing facility with expertise in physical properties of plastics, rubber, food, ceramics, and metals. Core competencies include mechanical, thermal and flow properties of materials with a focus on precision properties for use in product development and R&D.

Engineering Design Data including material model calibrations for CAE Research Support Services, your personal expert testing laboratory Lab Facilities gives you a glimpse of our extensive test facilities Test Catalog gets you instant quotes for over 200 physical properties.

www.eta.com

ETA – Engineering Technology Associates

Inventium SuiteTM

Inventium Suite[™] is an enterprise-level CAE software solution, enabling concept to product. Inventium's first set of tools will be released soon, in the form of an advanced Pre & Post processor, called PreSys.

Inventium's unified and streamlined product architecture will provide users access to all of the suite's software tools. By design, its products will offer a high performance modeling and postprocessing system, while providing a robust path for the integration of new tools and third party applications.

PreSys

Inventium's core FE modeling toolset. It is the successor to ETA's VPG/PrePost and FEMB products. PreSys offers an easy to use interface, with drop-down menus and toolbars, increased graphics speed and detailed graphics capabilities. These types of capabilities are combined with powerful, robust and accurate modeling functions.

VPG

Advanced systems analysis package. VPG delivers a unique set of tools which allow engineers to create and visualize, through its modules-structure, safety, drop test, and blast analyses.

DYNAFORM

Complete Die System Simulation Solution. The most accurate die analysis solution available today. Its formability simulation creates a "virtual tryout", predicting forming problems such as cracking, wrinkling, thinning and spring-back before any physical tooling is produced

Solutions

ESI Group

www.esi-group.com

Visual-Environment: Visual-Environment is an integrated suite of solutions which operate either concurrently or standalone within a common environment. It aims at delivering an open collaborative engineering framework. As such, it is constantly evolving to address various disciplines and available solvers.

Visual-Crash is a dedicated environment for crash simulation: It helps engineers get their job done in the smoothest and fastest possible way by offering an intuitive windows-based graphical interface with customizable toolbars and complete session support.

For LS-DYNA users, Visual-Crash DYNA allows to focus and rely on high quality digital models, from start to finish as it addresses the coupling with competitive finite element or rigid body based software. This very open and versatile environment simplifies the work of CAE engineers across the enterprise by facilitating collaboration and data sharing.

Further tools are integrated in Visual-Environment enhancing CAE engineers work tasks most efficiently. **Visual-Mesh** generates 1D, 2D and 3D elements for any kind of simulation.

Visual-Mesh provides automatic and guided surfaces clean up, application specific mesh generation and intuitive post mesh editing features..

Visual-Viewer is a complete, productive and innovative post-processing environment for CAE applications.

Visual-Viewer delivers a dedicated plotting and animation control solution. It offers a multi page, multi plot environment, allowing to group data into pages and plots. It is designed with a Windows GUI based on an intuitive and sleek user interface.

Visual-Process Executive is an advanced CAE environment for process customization and automation.

VisualDSS is an End-to-End Decision Support System for CAE. Manufacturers widely resort to Simulation-Based Design to gain a competitive edge in product development.

Participant

GNS - Gesellschaft für Numerische Simulation mbH

www.gns-mbh.com

Animator4

A general finite element post-processor and holds a leading position in its field. Animator4 is used worldwide by almost all automotive companies, a great number of aerospace companies, and within the chemical industry.

Generator2.

A specialized pre-processor for crashworthiness applications and has become very successful in the field of passenger safety and pedestrian protection. It is mainly used as a positioning tool for finite element component models by a great number of automobile companies throughout the world.

Indeed

An easy-to-use, highly accurate virtual manufacturing software that specializes in the simulation of sheet metal forming processes. Indeed is part of the GNS software suite and works concurrently with all other GNS software products.

OpenForm

A pre- and post-processor independently of a particular finite element forming simulation package. The software is extremely easy to handle and can be used as was designed to enable those who are not finite element experts to carry out multi-stage forming simulations with even complex multi purpose finite element codes.

Gompute on demand®/ Gridcore AB Swedenwww.gompute.comwww.gridcore.se

Gompute is owned, developed and operated by Gridcore AB in Sweden. Founded in 2002, Gridcore is active in three areas: Systems Integration, Research & Development and HPC as a service.

Gridcore has wide experience of different industries and applications, developed a stable product portfolio to simplify an engineer/scientist's use of computers, and has established a large network of partners and collaborations, where we together solve the most demanding computing tasks for our customers. Gridcore has offices in Gothenburg (Sweden), Stuttgart (Germany), Durham NC (USA) and sales operations in The Netherlands and Norway.

The Gridcore developed E-Gompute software for internal HPC resources gives end users (the engineers) an easy-to-use and complete environment when using HPC resources in their daily work, and enables collaboration, advanced application integrations, remote pre/post, accounting/billing of multiple teams, license tracking, and more, accelerating our customers usage of virtual prototyping

Participant

JSOL Corporation

HYCRASH

Easy-to-use one step solver. for Coupled Stamping-Crash Analysis. HYCRASH only requires the panels' geometry to calculate manufacturing process effect, geometry of die are not necessary. Additionally, as this is target to usage of crash/strength analysis, even forming analysis data is not needed. If only crash/strength analysis data exists and panel ids is defined. HYCRASH extract panels to calculate it's strain, thickness, and map them to the original data.

JSTAMP/NV

As an integrated press forming simulation system for virtual tool shop

www.jsol.co.jp/english/cae/

the JSTAMP/NV meets the various industrial needs from the areas of automobile, electronics, iron and steel, etc. The JSTAMP/NV gives satisfaction to engineers, reliability to products, and robustness to tool shop via the advanced technology of the JSOL Corporation.

JMAG

JMAG uses the latest techniques to accurately model complex geometries, material properties, and thermal and structural phenomena associated with electromagnetic fields. With its excellent analysis capabilities, JMAG assists your manufacturing process

Livermore Software Technology Corp.

www.lstc.com

LS-DYNA

A general-purpose finite element program capable of simulating complex real world problems. It is used by the automobile, aerospace, construction, military, manufacturing, and bioengineering industries. LS-DYNA is optimized for shared and distributed memory Unix, Linux, and Windows based, platforms, and it is fully QA'd by LSTC. The code's origins lie in highly nonlinear, transient dynamic finite element analysis using explicit time integration.

LS-PrePost

An advanced pre and post-processor that is delivered free with LS-DYNA. The user interface is designed to be both efficient and intuitive. LS-PrePost runs on Windows, Linux, and Macs utilizing OpenGL graphics to achieve fast rendering and XY plotting.

LS-OPT

LS-OPT is a standalone Design Optimization and Probabilistic Analysis package with an interface to LS-DYNA. The graphical preprocessor LS-OPTui facilitates definition of the design input and the creation of a command file while the postprocessor provides output such as approximation accuracy, optimization convergence, tradeoff curves, anthill plots and the relative importance of design variables.

LS-TaSC

A Topology and Shape Computation tool. Developed for engineering analysts who need to optimize structures, LS-TaSC works with both the implicit and explicit solvers of LS-DYNA. LS-TaSC handles topology optimization of large non-linear problems, involving dynamic loads and contact conditions.

LSTC Dummy Models

Anthropomorphic Test Devices (ATDs), as known as "crash test dummies", are life-size mannequins equipped with sensors that measure forces, moments, displacements, and accelerations.

LSTC Barrier Models

LSTC offers several Offset Deformable Barrier (ODB) and Movable Deformable Barrier (MDB) model

Oasys, Ltd

www.oasys-software.com/dyna

Oasys LS-DYNA® Environment

The Oasys Suite of software, exclusively written for LS-DYNA®, is at the leading edge of the market and is used worldwide by many of the largest LS-DYNA® customers.

Oasys PRIMER is a model preparation tool that is fully compatible with the latest version of LS-DYNA®, eliminating the risk of data loss or corruption when a file is manipulated, no matter what operations are performed on it:

Key benefits:

- Maintains data integrity
- Finds and fixes model errors (currently over 5000 checks)
- Specialist tools for dummy positioning, seatbelt fitting, mechanisms, interior head impact etc.
- Connection manager for spotwelds, bolts, adhesive etc.
- Intelligent editing, deletion and merging of data
- Customisable with macros and JavaScript.

Oasys D3PLOT is a powerful 3D visualization package for post-processing LS-DYNA® analyses

Key benefits:

- Fast, high quality graphics
- Easy, in-depth access to all LS-DYNA® results.
- User defined data components
- Customisable with JavaScript.

Oasys T/HIS is an X-Y graph plotting package for LS-DYNA®

Key benefits:

- 1. Automatically reads all LS-DYNA® results.
- 2. Wide range of functions and injury criteria.
- 3. Easy handling of data from multiple models
- 4. Scriptable for automatic post-processing

Oasys REPORTER is an automatic report generation tool, for use with LS-DYNA®. which allows fast automatic report creation for analyses.

Participant

Solutions

www.hengstar.com

Shanghai Hengstar

Center of Excellence

Hengstar Technology is the first LS-DYNA training center of excellence in China. As part of its expanding commitment to helping CAE Engineers, Hengstar Technology will continue to organize high level training courses and seminars in 2012.

The lectures/training are taught by senior engineers and experts mainly from LSTC, Carhs, OEMs, and other consulting groups.

On Site Training

Hengstar also provides customer customized training programs on-site at

the company facility. Training is tailored for company needs using LS-DYNA or the additional software products by LSTC.

Distribution & Support

Hengstar Distributes and supports LS-DYNA, LS-OPT, LS-PrePost, LS-TaSC. Hongsheng Lu, previously was directly employed by LSTC before opening his distributorship in China for LSTC software. He travels to LSTC often to keep current on the latest software features and support to continue to grow Hengstar as a CAE consulting group.

Distribut	tion & Consulting	North Ame	rica D	istribution &	& Consulting
Canada	Metal Forming Analysi <u>www.mfac.com</u>	is Corp MFAC <u>m</u>	galb	@mfac.com	
	LS-DYNA I STC Dummy Models	LS-OPT	Models	LS-PrePost	LS-TaSC
	eta/DYNAFORM	INVENTIUM/	PreSys		
United States	CAE Associates Inc. www.caeai.com		info@cae	<u>vai.com</u>	
	ANSYS Products	CivilFem	Consultir Consultir	ng ANSYS ng LS-DYNA	
United States	DYNAMAX www.dynamax-inc.com		sales@dy	<u>mamax-inc.com</u>	
	LS-DYNA LSTC Dummy Models	LS-OPT	LS-PrePo LSTC Ba	ost rrier Models	LS-TaSC

Distributi	on & Consulting	North America	Distribution & C	onsulting
United States	ESI-Group N.A www.esi-group.co	<u>m</u>		
	QuikCAST	SYSWELD	PAM-RTM	PAM-CEM
	VA One	CFD-ACE+	ProCAST	Visual-Process
	VisualDSS	Weld Planner	Visual-Environment	IC.IDO
United States	Engineering Technolog www.eta.com	y Associates – ETA	sales@eta.com	
	INVENTIUM/PreSy	NISA	VPG	LS-DYNA
	LS-OPT	DYNAform		
United States	Gompute www.gompute.com	<u>l</u>	info@gompute.com	
	LS-DYNA Cloud Service Additional Services		Additional software	

Distribution & ConsultingNorth AmericaDistribution & Consulting

United	Livermore Software Tech	sales@lstc.com		
States	LSTC <u>www.lstc.com</u>			
	LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
	LSTC Dummy Models	LSTC Barrier Models	TOYOTA THU	MS

United States	Predictive Engineering www.predictiveengineering.com		george.laird@predictiveen	gineering.com
	FEMAP	NX Nastran	LS-DYNA	LS-OPT
	LS-PrePost	LS-TaSC	LSTC Dummy Models	
			LSTC Barrier Models	

Distribution &	& Consulting	Europe	Distribution	& Consulting
France	DynAS+		v.lapoujade@dynasplus	.com
	www.dynasplus.com	<u>m</u>		
	LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
	DYNAFORM	VPG	MEDINA	
	LSTC Dummy Mode	els	LSTC Barrier Models	
France	ALYOTECH		nima.edjtemai@alyotech.f	ř
	www.alyotech.fr			
	ANSYS	LS-DYNA	MOLDEX3D	FEMZIP
	Primer	PreSys	DYNAFORM	SKYGEN
	MERCUDA	MOCEM		
Germany	CADFEM GmbH		lsdyna@cadfem.de	
	www.cadfem.de			
	ANSYS	LS-DYNA	optiSLang	DIGIMAT
	ESAComp	AnyBody	VPS	
	FTI FormingSuite			

Distribution & Consulting		Europe	Distribution	& Consulting
Germany	DYNAmore GmbH	ĺ	uli.franz@dynamore.de	
	www.dynamore.de			
	PRIMER	LS-DYNA	FTSS	VisualDoc
	LS-OPT	LS-PrePost	LS-TaSC	DYNAFORM
	Primer	FEMZIP	GENESIS	
	TOYOTA THUMS		LSTC Dummy & Barrier	Models
Germany	GNS		mbox@gns-mbh.com	
	www.gns-mbh.com			
	Animator	Generator	Indeed	OpenForm
Nothenland	Infinta		i mathiisean @infinita nl	
Inetherland	ininte		<u>j.manijssen@mmme.m</u>	
	www.infinite.nl			
	ANSYS Products	CivilFem	CFX	Fluent
	LS-DYNA	LS-PrePost	LS-OPT	LS-TaSC

Distribution &	Consulting	Europe	Distribution	& Consulting	
Italy	EnginSoft SpA		info@enginsoft.it		
	www.enginsoft.it				
	ANSYS	MAGMA	Flowmaster	FORGE	
	CADfix	LS-DYNA	Dynaform	Sculptor	
	ESAComp	AnyBody	FTI Software		
	AdvantEdge	Straus7	LMS Virtual.Lab	ModeFRONTIER	
Russia	STRELA		info@dynarussia.com		
	LS-DYNA	LS-TaSC	LS-OPT	LS-PrePost	
	LSTC Dummy Models		LSTC Barrier Models		
Sweden	DYNAmore Nordic		marcus.redhe@dynamore.se		
	www.dynamore.se				
	ANSA	μΕΤΑ	LS-DYNA	LS-OPT	
	LS-PrePost	LS-TaSC	FastFORM	DYNAform	
	FormingSuite		LSTC Dummy Models		
			LSTC Barrier Models		
Sweden	GRIDCORE		info@gridcore.com		
	www.gridcore.se				
	LS-DYNA Cloud Ser	vice	Additional software		

Distribution &	c Consulting	Europe	Distribution &	& Consulting
Switzerland	DYNAmoreSwis	s GmbH	info@dynamore.ch	
	LS-DYNA		LS-OPT	LS-PrePost
	LS-TaSC		LSTC Dummy Models	
			LSTC Barrier Models	
UK	Ove Arup & Par	tners .com/dyna	dyna.sales@arup.com	
	LS-DYNA		LS-OPT	LS-PrePost
	LS-TaSC	PRIMER	D3PLOT	T/HIS
	REPORTER	SHELL	FEMZIP	HYCRASH
	DIGIMAT	Simpleware	LSTC Dummy Models	
			LSTC Barrier Models	

Distribut	tion & Consulting	Asia Pao	cific Distribut	ion & Consulting
Australia	LEAP			
	www.leapaust.com.au			
	ANSYS Mechanical	ANSYS CFD	ANSYS EKM	Recurdyn
	ANSYS DesignXplorer	ANSYS HPC	FlowMaster	Ensigh
	LS DYNA	DYNAform	Moldex 3D	FE-Safe
China	ETA – China		lma@eta.com.cn	
	www.eta.com/cn			
	Inventium	VPG	DYNAFORM	NISA
	LS-DYNA	LS-OPT	LSTC Dummy Models	LS-PrePost
			LSTC Barrier Models	LS-TaSC
China	Oasys Ltd. China		Stephen.zhao@arup.com	
	www.oasys-software.com/dy	<u>/na</u>		
	PRIMER D3PLOT	HYCRASH	T/HIS REPORTER	SHELL
	LS-DYNA	LS-OPT	LSTC Dummy Models	LS-PrePost
	DIGIMAT	FEMZIP	LSTC Barrier Models	LS-TaSC
China	Shanghai Hengstar Te	chnology	info@hengstar.com	
	www.hengstar.com			
	LS-DYNA	LS-1aSC	LSIC Barrier Models	
	LS-DYNA Courses	LS-OPT	LSTC Dummy Models	LS-PrePost

Distrib	ution & Consulting	Asia P	acific Distribu	tion & Consulting
India	Oasys Ltd. India		lavendra.singh@arup.com	
	www.oasys-software.com	<u>n/dyna</u>		
	PRIMER D3PLOT	T/HIS		
		LS-OPT	LSTC Dummy Models	LS-PrePost
		LS-DYNA	LSTC Barrier Models	LS-TaSC
India	EASI Engineering		rvenkate@easi.com	
	www.easi.com			
	ANSA			
	LS-DYNA	LS-OPT	LSTC Dummy Models	LS-PrePost
			LSTC Barrier Models	LS-TaSC
India	CADFEM Eng. Svce		info@cadfem.in	
	www.cadfem.in			
	ANSYS VPS	optiSLang	ESAComp	DIGIMAT
	LS-DYNA	LS-OPT	LSTC Dummy Models	LS-PrePost
	FTI FormingSuite	AnyBody	LSTC Barrier Models	LS-TaSC
India	Kaizenat Technologie	es Pvt. Ltd	support@kaizenat.com	
	http://kaizenat.com/			
	LS-DYNA	LS-OPT	LSTC Dummy Models	LS-PrePost
	Dedicated to LSTC Soft	ware	LSTC Barrier Models	LS-TaSC

Japan	JSOL			
	www.jsol.co.jp/english/cae			
	JSTAMP	HYCRASH	JMAG	
	LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
	LSTC Dummy Models	LSTC Barrier Models	TOYOTA THUN	4S

Japan	FUJITSU			
	http://jp.fujitsu.com/solutions/hj	pc/app/lsdyna		
	LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
	LSTC Dummy Models	LSTC Barrier Models	CLOUD Services	

Distributio	on & Consulting	Asia Pacific	Distribution	& Consulting
Korea	THEME	wschung@kornet.com		
	www.lsdyna.co.kr			
	LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
	LSTC Dummy Models	LSTC Barrier Models	eta/VPG	Planets
	eta/DYNAFORM	FormingSuite	Simblow	TrueGRID
	JSTAMP/NV	Scan IP	Scan FE	Scan CAD
	FEMZIP			

Korea	KOSTECH	young@kostech.co.kr		
	www.kostech.co.kr			
	LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
	LSTC Dummy Models	LSTC Barrier Models	eta/VPG	FCM
	eta/DYNAFORM	DIGIMAT	Simuform	Simpack
	AxStream	TrueGrid	FEMZIP	

Distribution & ConsultingAsia PacificDistribution & ConsultingTaiwanFlotrendgary@flotrend.twwww.flotrend.com.twks-DYNALS-OPTLS-PrePostLSTC Dummy ModelsLSTC Barrier Modelseta/VPGFCM

APIC			
www.apic.com.tw			
LS-DYNA	LS-OPT	LS-PrePost	LS-TaSC
LSTC Dummy Models	LSTC Barrier Models	eta/VPG	FCM
	APIC www.apic.com.tw LS-DYNA LSTC Dummy Models	APICwww.apic.com.twLS-DYNALSTC Dummy ModelsLSTC Barrier Models	APICwww.apic.com.twLS-DYNALS-OPTLSTC Dummy ModelsLSTC Barrier Modelseta/VPG

LS-DYNA

Germany	Gridcore <u>www.gridcore.se</u>
Sweden	Gridcore <u>www.gridcore.se</u>
United States	Gompute <u>www.gompute.com</u>

DYNA

Germany CADFEM GmbH

Training Classes

The Complete Courses Offered Can Be Found At: www.cadfem.de

Please check the site for accuracy and changes. Among the many course offered:

Introduction to explicit structural mechanics

with ANSYS-LS-DYNA and LSTC's LS-

11/06/12

Working efficiently with Diffpack in ANSYS Workbench

11/07/12

Additional Courses are offered – please check the website for upcoming dates for: FTI Forming Suite - DIGIMAT DIFFPACK and others.

Individual Training: Take advantage of the expertise of our specialists and get to know how simulation processes in your company can be arranged in an optimal way.

11/06/12 12/19/12

Contact modeling with LS-DYNA 11/06/12

Introduction to simulation with Diffpack

Training Classes

Germany DYNAmore

Training Classes

The Complete Courses Offered Can Be Found At: www.dynamore.de/en

Intro LS-DYNA

09/20/12 10/15/12 10/30/12 12/10/12

Crash Analysis 12/04/12

Contact Definitions 10/18/12

10/11/12

ALE

Plasticity 10/24/12

Meshless Methods 10/11/12

Users Interfaces

11/19/12

The Complete Courses Offered Can be Found At. www.istc.col	The	Complete	Courses	Offered	Can	Be Found	At:	www.lstc.cor
--	-----	----------	---------	---------	-----	----------	-----	--------------

Introduction to LS-OPT	MI	November 6-9, 2012
Introduction to LS-PrePost (no charge)	CA	November 12, 2012
Introduction to LS-DYNA	CA	November 13-16, 2012
Introduction to LS-PrePost (no charge)	MI	December 10, 2012
Introduction to LS-DYNA	MI	December 11-14, 2012
Advanced Options in LS-DYNA	MI	December 17-18, 2012

January 21-22, 2013	Implicit Analysis with LS-DYNA	MI
January 28, 2013	Introduction to LS-PrePost (no charge)	CA
Jan. 29 - Feb. 1, 2013	Introduction to LS-DYNA	CA
February 25-27, 2013	ALE/EULERIAN & Fluid/Structure Interaction in LS-DYNA	CA
February 28-March 1, 2013	Smoothed Particle Hydrodynamics (SPH) in LS-DYNA	CA
March 14-15, 2013	Blast & Penetration	MI
March 18, 2013	Introduction to LS-PrePost (no charge)	MI
March 19-22, 2013	Introduction to LS-DYNA	MI
March 19-20, 2013	Advanced Options in LS-DYNA	CA
March 21-22, 2013	Contact in LS-DYNA	CA

Training Classes

Sweden DYNAmore Nordic

Training Classes

The Complete Courses Offered Can Be Found At: www.dynamore.se

Please check the site for accuracy and changes. Among the many course offering are the following:

ANSA & Metapost, introductory course October 9

Contacts in LS-DYNA October 12

LS-DYNA, simulation of sheet metal forming processes October 16

LS-DYNA, advanced training class in impact analysis November 20

LS-PrePost 3, introduction November 26

LS-DYNA, introductory course November 27

LS-DYNA, implicit analysis October 2 France DynAS+

The complete Training Courses offered can be found at www.dynasplus.com

Please check the site for accuracy and changes.

LS-DYNA Unified Introduction Implicit & Explicit Solver 16-19/01, 18-21/06 & 12-15/11

Switch from Ls-PrePost 2.X to 3.X 28/11

LS-DYNA SPH 21-22/05 & 8-9/10 -material modeling 14-15/12 LS-PrePost 3.0 – Advanced meshing capabilities 5/04 & 27/09 & 29/11

LS-DYNA – Plasticity, Damage & Failure – By Paul DU BOIS 26-27/11 (date may be changed in Q1)

LS-DYNA – Polymeric materials – By Paul DU BOIS 12-13/12

Training Classes

Users LS-DYNA Days

Alyotech will be hosting two Users Days this year. These events will focus on the recent evolutions of LS-DYNA and related products from LSTC and will feature talks both about novel functions and real-world applications.

Two sessions will be held: the first one will take place in Toulouse on September 20th while the second one will be held in Antony on November 8th. Each session will start with lectures from Alyotech and presentations of studies from LS-DYNA users in the morning. The afternoon will then be devoted to discussions between users on selected topics of interest.

Don't hesitate to contact us at <u>support.ls-</u> <u>dyna@alyotech.fr</u>

Training Classes

United States ETA

Engineering Technology Associates

The Complete Courses Offered Can Be Found At: <u>www.eta.com</u>

Please check the site for accuracy and changes. Among the many course offering are the following:

Introduction to DYNAFORM

November 6th December 4th

Introduction to PreSys

November 13th December 11th

Introduction to LS-DYNA

November 20th December 18th **United States CAE Associates**

Training Classes

The Complete Courses Offered Can Be Found At: www.caeai.com

Please check the site for accuracy and changes. Among the many course ffering are the following:

ANSYS Training, CFD and FEA Consultants Serving CT, NJ, NY, MA, NH, VT

Partial Listing

Nov 01, 2012 Assembly Modeling – eLearning / Online Mechanically Fastened Joints and Bolt Preload - e-Learning / Online

Nov 05, 2012 Introduction to ANSYS Mechanical APDL Part I

Nov 08, 2012 Introduction to ANSYS Mechanical APDL Part II

Nov 13, 2012

Nov 15, 2012 Mechanically Fastened Joints and Bolt Preload - e-Learning / Online

Dec 03, 2012 ANSYS DesignModeler

Dec 04, 2012 Introduction to ANSYS Mechanical (Workbench) /

2012	2	3	4	5	6	7	8	9	10	11	12
An Introduction to LS-DYNA(High											
Level)											
Concrete & Geomaterial Modeling											
with LS-DYNA											
Pedestrian Safety and Bonnet Design											
with LS-DYNA											
Crashworthiness Theory and											
Technology											
LS-DYNA MPP, Airbag Simulation											
with LS-DYNA											
Introduction of LS-OPT which is											
Based on LS-DYNA											
Passive Safety and Restraint Systems											
Design											
Crashworthiness Simulation with LS-											
DYNA											
Passive Safety Simulation with LS-											
DYNA											
Crashworthy Car Body Development											
- Design, Simulation and											
Optimization											

The Complete Courses Offered Can Be Found at http://www.hengstar.com

Training Classes

France Alyotech Technologies

For course location visit <u>www.alyotech.fr</u>

LS-DYNA Introduction

Nov 12-14 Dec 03-05

LS-DYNA Implicit Nov 19-21 LS-PrePost – Meshing Nov 26

LS-PrePost – New Interface Nov 27

LS-OPT Introduction Dec 10-11

LS-TaSC – Topology Optimization Dec 12

EVENTS

9th European LS-DYNA Users' Conference

Location: Manchester Central Convention Complex, Manchester, UK

Welcome Reception and Social Event: Sunday 2nd June 2013

Conference:

Monday 3rd and Tuesday 4th June 2013

Gala Dinner:

Monday 3rd June 2013

Arup are pleased to announce that the 9th European LS-DYNA Users' Conference will be held at Manchester Central Convention Complex, UK on 3rd and 4th June 2013.

Manchester is situated in the centre of the UK with one of the world's best connected international airports and efficient road and rail links. The event will give those in academia and industry a chance to present their work to colleagues and to catch up on the latest developments in the software. Attendees can also meet with exhibitors to find out more about hardware, software and services relating to LS-DYNA. On the evening of Monday 3rd June the Gala Dinner will take place at the Museum of Science and Industry, just a short walk from the conference venue. The museum brings to life innovation and invention from science and industry through the ages even offering rides on 'Planet', a reproduction steam locomotive!

Important dates:

Registration Opens:	end of September 2012
Abstract Deadline:	end of December 2012
Papers Deadline:	end of April 2013

If you would like to attend, present, exhibit or sponsor, please visit our conference website at: http://arup.cvent.com/euroconference.

We look forward to welcoming you to the event!

Optimization

By: Dr. Nielen Stander, LSTC

10th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA

Session Announcement: "Optimization in Nonlinear Dynamics" Organized by: Dr. Nielen Stander LSTC held at 10th World Congress on Structural and Multidisciplinary Optimization "I am organizing a session on "Optimization in Nonlinear Dynamics" at the next conference of the *International Society for Structural and Multidisciplinary Optimization* (WCSMO10). As a user of LS-DYNA, I would like to invite you to submit an abstract to this session. In order for me to provide early feedback, interested participants may submit their abstracts to <u>nielen@lstc.com</u> a week or two prior to the deadline." Nielen Stander

Contributions for this session may include:

- Crashworthiness Optimization
- Optimization in Fluid Dynamics
- Optimization in Reactive Flow
- Optimization in Electromagnetics
- Optimization in Fluid-Structure
 Interaction
- Optimization using LS-DYNA
- Parameter Identification of Nonlinear Materials
- Topology Optimization in Nonlinear Dynamics

The 500 words abstract submission deadline is January 15, 2013

Final abstracts must be submitted, directly through the conference website, by January 15, 2013.

General information about the conference can be found on the conference web site <u>http://conferences.dce.ufl.edu/wcsmo-10</u>.

Nielen Stander (nielen@lstc.com) **Social Media**

FACEBOOK

BETA CAE SYSTEMS SA

http://www.facebook.com/pages/BETA-CAE-Systems-SA/193472524006194

Cray Inc.

http://www.facebook.com/crayinc

ESI Group

http://www.esi-group.com/corporate/facebook/

BETA CAE SYSTEMS SA

http://twitter.com/betacae

Cray Inc. http://www.twitter.com/cray_inc

ESI Group http://twitter.com/ESIgroup

ETA

http://twitter.com/ETA_Inc

Social Media

FACEBOOK

BETA CAE SYSTEMS SA

http://www.linkedin.com/company/beta-cae-systems-s.a.?trk=fc_badg

Cray Inc.

http://www.linkedin.com/company/4936

ETA

http://www.linkedin.com/groupRegistration?gid=1960361

Oasys

http://www.linkedin.com/groups/Oasys-LSDYNA-Environment-Software-4429580?gid=4429580&trk=hb_side_g

BETA CAE SYSTEMS SA

http://www.youtube.com/user/betacae

Cray Inc.

http://www.youtube.com/user/crayvideo

ESI Group

http://www.youtube.com/ESIgroup

ETA

http://www.youtube.com/user/etainfo1

http://www.eta.com/index.php/eta-news?format=feed&type=rss

The Pi-Theorem: Applications to Fluid Mechanics and Heat and Mass Transfer (Experimental Fluid Mechanics)

Product Details Hardcover: 330 pages Publisher: Springer; 2012 edition (January 21, 2012) Language: English ISBN-10: 3642195644 ISBN-13: 978-3642195648 Product Dimensions: 6.1 x 0.9 x 9.2 inches Shipping Weight: 1.4 pounds

Book Description

This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.

From the Back Cover

This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.

Recommended Reading

Defenence Library	Decommonded Decing	Deference Library
Kererence Library Withus Yoyler Kuthus Yoyler Viskoplastische Stoffgesetze für Thermoplaste in LS-DYNA Theorie und Aspekte der Programmierung	Meshless Methods in Solid Mechanics	GEOTECHNICAL EARTHQUAKE ENGINEERING STEVEN L. KRAMPI
Viskoplastische Stoffgesetze für Thermoplaste in LS- DYNA: Theorie und Aspekte der Programmierung Matthias Vogler	Meshless Methods in Solid Mechanics Youping Chen	Geotechnical Earthquake Engineering Steven Lawrence Kramer
	Statementical receptories of needs initialized concerted slad blocked to blace and province handle as the 15 DDNA	Renautas Mechanical — Bracanat SHOCK and IMPACT
Biomechanical Systems Technology: Computational Methods	<u>Numerical response of steel</u> <u>reinforced concrete slab</u> subjected to blast and pressure	Formulas for Mechanical and Structural Shock and Impact Gregory Szuladziniski

Cornelius T. Leondes

subjected to blast and pressure loadings in LS-DYNA.

Vivek Reddy

Recommended Reading

Noregius: Methods and Ny foregius: Methods and Ny foregius: Methods and Ny foregius: Methods and no Flot Torring: Managemethods and States	Computational Fluid Dynamics for Eng risers	根料成形 CAE设计及应用 → HorrAntoion	
Theories, Methods	CFD for Engineers	CAE design and sheet	Applied Metal
Ping Hu, Ning Ma,		<u>metal forming</u> Li Fei Zhou Deng	<u>Forming</u>
Sheet Mital Sheet Mital Breath Breat			
<u>Micro Metal</u>			
Forming (Lecture			
Notes in Production			
Engineering)			

Hereiter Hereiter Hereiter Kurnerisch Rechtrology Hereiter Hereiter Hereiter	Computational Fluid Dynamics for Engineers	根料成形 CAE设计及应用 HIPYTATISTAN	
Theories, Methods	CFD for Engineers	CAE design and sheet	Applied Metal
Ping Hu, Ning Ma,		<u>metal forming</u> Li Fei Zhou Deng	<u>Forming</u>
Sheet Midal Sheet Midal Processes Processes			
Micro Metal			
Forming (Lecture			
Notes in Production			
Engineering)			