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■ Coupled Problems

■ Dynamic Interaction of 

physically or computationally 

heterogeneous components

■ Interaction is multi-way 

■ Coupled Multi-Field Problems

■ The individual field equations are also 

functions of the other field

■ Example: velocity and pressure fields 

for incompressible viscous flow

■ Coupled Multi-Physics Problems

■ Multiple physical models or phenomena 

are handled simultaneously

■ Different discretization techniques are 

used for individual subproblems

■ Example: particle systems (DEM) 

interact with structures (FEM) on the 

same or multiple scales

■ Field variables represent different but 

interacting physical phenomena

■ Example: thermoelectricity combining 

heat conduction and electrodynamics

Introduction

Park & Felippa: Partitioned analysis of 
coupled systems. In Belytschko & Hughes 
(eds.): Computational Methods for Transient 
Analysis. Amsterdam 1983, pp. 157–219

Partitioning or splitting of a coupled problem
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■ Classification of the Coupling

■ Volume Coupled 

■ Discretized field variables (DOF)

are coupled on the same domain

■ Weak coupling

■ Thermo-mechanical problem

□ displacement & thermal field

■ Strong coupling

■ Incompressible fluid flow

□ velocity & pressure field

■ Electro-magnetical problem

□ electric field & magnetic flux density

■ Porous-media problems

□ displacement & pressure field

□ displacement, pressure & 

concentration fields

■ Surface Coupled

■ Discretized field variables (DOF)

are coupled at an interface surface

■ Weak coupling

■ Mechanical contact 

■ Heat transmission

■ Structural sound emission

■ Fluid-structure interaction 

(low-density fluids)

■ Strong coupling

■ Fluid structure interaction

(high-density fluids)

Introduction
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■ Solution of Coupled Problems

■ Spatial semi discretization

■ Finite-Element Method (FEM)

■ Finite-Difference Method (FDM)

■ Finite-Volume Method (FVM) 

■ Arbitrary Lagrange Eulerian (ALE)

■ Boundary-Element Method (BEM) 

■ Discrete-Element Method (DEM)

■ Smoothed Particle Hydrodynamics (SPH)

■ Element-Free Galerkin (EFG)

■ Time integration

■ Implicit and explicit time-stepping schemes

■ Monolithic or direct approach

□ the problem is treated monolithically

□ all components are integrated with the same scheme

■ Partitioned or iterative approach

□ system components are treated as isolated entities

□ separate time integration with arbitrary schemes

□ subcycling to account for different time scales

□ prediction, substitution, and synchronization techniques apply

Introduction
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■ One-Code Strategy for LS-DYNA

■ Presented Simulations in the field of

■ Thermo-mechanical coupling

■ Electro-magnetical coupling

■ Fluid-structure interaction

■ Particle-structure interaction

Introduction

“Combine the multi-physics capabilities into one scalable code

for solving highly nonlinear transient problems to enable

the solution of coupled multi-physics and multi-stage problems”

-- John Hallquist (2012)
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■ Solvers are Connected in a Staggered Solution Scheme

■ Application: Hot stamping of high strength steel

Thermo-Mechanical Coupling

Mechanical Solver Thermal Solver

Based on the actual temperature
the mechanical solver calculates:

� Plastic work
� Contact gap and contact pressure
� Temperature dependent constitutive 

material properties
� Thermal expansion
� Update of the actual geometry

Based on the actual geometry
the thermal solver calculates:

� Heat source from plastic work
� Heat generated by sliding friction
� Contact heat transfer coefficient based 

on actual contact gap and pressure
� Update of the actual temperature.
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■ Thermal Coupling Effects

■ Plastic work to heat conversion

■ Friction-induced heat

■ Friction coefficient is very high (0.4 …0.6)

■ Note: These are effects of second order in hot stamping

Thermo-Mechanical Coupling
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■ Thermal Contact – Heat Transfer Coefficient

■ Gap heat transfer in LS-DYNA

■ Closed contact heat transfer in LS-DYNA

Thermo-Mechanical Coupling
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■ Subcycling of the Thermo-Mechanical Coupling

■ The “critical” implicit thermal timestep is usually some orders of magnitude 

greater than the critical explicit mechanical timestep

■ Example: Steel at room temperature with 1 mm edge length

■ Note: Make sure the thermal timestep is small 

enough to capture the mechanical motion

Thermo-Mechanical Coupling
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λ : thermal conductivity

c : heat capacity

ρ : density

E : Youngs modulus

ν : Poisson‘s ratio

ρ : density

Model must be able to respond 
as fast as real life [Owen 1993] CFL Condition

Timestep O.K. Timestep too big
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■ Use of Thermal Contact to Enhance Modeling Skills

■ Die surface geometry accurately modeled with shell elements

■ Die volume geometry modeled with volume elements

■ Shell and volume mesh coupled with contact definition

■ Heat transfer from blank to die surface shell by thermal contact

■ Heat dissipation into the dies by thermal contact between shell and volume mesh

Thermo-Mechanical Coupling

independent meshing
of surface and volume

Penetrations between 
Volume Elements and  
Blank Shells are 
ignored in the 
mechanical contacts
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■ Correct Temperature in Non-Matching Meshes

Thermo-Mechanical Coupling
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■ Cooling Simulation – Is the Coupling Necessary?

pd

h

closed contact

F1 F1
F2

? ?

thermal only coupled with rigid die coupled with elastic die

1.0 s

Thermo-Mechanical Coupling

Temperature
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■ Coupled Simulation of Forming and Cooling due to Contact with the Die

Thermo-Mechanical Coupling
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■ Modeling Phase Transformations

■ *MAT_UHS_STEEL (*MAT_244)

■ Paul Akerstrom, “Modeling and Simulation of Hot Stamping” 

Ph.D. Thesis, Lulea University of Technology, 2006

■ Phase Transformations due to Different Cooling Rates

Thermo-Mechanical Coupling
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■ Electro-Magnetic Solver and Connection to Mechanical and Thermal Solvers 

■ Solvers are connected in a staggered solution scheme

Electro-Magnetical Coupling
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■ Current EM Status

■ All EM solvers work on solid elements for conductors

■ Hexahedrons, tetrahedrons, wedges

■ Shells can be used for insulator materials

■ Available in both SMP and MPP

■ 2D axi-symmetric available

■ The EM fields as well as EM force and Joule heating can be 

visualized in LS-PREPOST :

■ Fringe components

■ Vector fields

■ Element histories 

■ Only Available in LS-DYNA 980

Electro-Magnetical Coupling
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■ EM Solver Validation

■ Some T.E.A.M. (Testing Electromagnetic Analysis Methods) test cases have been 

used to validate LS-DYNA’s EM accuracy and to demonstrate its features

■ T.E.A.M. 28 : An Electrodynamic Levitation Device

■ Conducting plate that levitates over 

two exciting coils

■ Plate oscillates and progressively 

reaches an equilibrium position

Electro-Magnetical Coupling

Coils

Levitating plate

H
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Test

LS-DYNA

Time
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■ EM Solver Validation (Cntd.)

■ Heating of a steel plate by induction

■ In collaboration with: M. Duhovic, 

Institut für Verbundwerkstoffe, 

Kaiserslautern, Germany  

Electro-Magnetical Coupling

Thermal images from 
experiment

LS-DYNA temperature 
fringes
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■ Subcycling for the Induced Heating Problem

■ Problem: The coil’s current oscillation period is smaller than the total time of the problem

■ Consequence: Many small EM time steps needed

■ Solution: Induced heating solver with “micro” and “macro” time step

■ Application: Conducting plaque moving through coils that induce Joule heating

Electro-Magnetical Coupling
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■ EM Applications

■ Magnetic Metal Welding

■ Current density fringe

■ In collaboration with:

■ M. Worswick & J. Imbert

University of Waterloo,

Canada

■ Sheet forming on conical die

Electro-Magnetical Coupling
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■ EM Applications (Cntd.)

■ Forming of a tube-shaft joint

■ In collaboration with

■ Fraunhofer Institute for Machine Tools

and Forming Technology IWU, Chemnitz

Dipl.-Ing. Christian Scheffler

■ Poynting GmbH, Dortmund, 

Dr.-Ing. Charlotte Beerwald

Electro-Magnetical Coupling

coil

field 

shaper

shaft

tube

axial 

pressure 

plate
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■ Solver for Incompressible Fluid Dynamics (ICFD) 

■ Weak and strong coupling to mechanical solver

■ Monolithic solution of the thermal fields

Fluid-Structure Interaction

Temperature
Drag forces, 

pressure
Displacement Temperature

Mechanical Solver        Thermal Solver

Navier-Stokes:

Incompressibility:

(Continuity)

Heat  equation:

: gradient

µ : viscosity 

p : pressure

v : fluid velocity

b : body force

ρ : density

T : temperature

α : diffusivity
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■ Current ICFD Status

■ Based on a stabilized finite-element formulation

■ Stand alone implicit CFD solver with coupling to the 

■ Mechanical solver (FSI problems) 

■ Thermal solver  (Conjugate heat transfer problems) 

■ ALE approach for mesh movement

■ Boundaries of FSI are Lagrangean and deform with the structure

■ Strong coupling available for implicit mechanics (more robust but more costly)

■ Loose coupling for explicit mechanics (less robust and less costly)

■ Only Available in LS-DYNA 980

Fluid-Structure Interaction
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■ Automatic Mesh Generation and Refinement

■ Automatic generation of the volume mesh and the boundary layer mesh

■ Possibility to specify local mesh size for better resolution

■ Error estimators may be used to trigger adaptive re-meshing

Fluid-Structure Interaction
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■ ICFD Solver Validation

■ Flow around a cylinder

■ Re=40: Symmetric flow separation ■ Re=100: Von Karman Vortex Street

Fluid-Structure Interaction
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■ Mesh used for the simulation

■ Cylinder element size based on a unity Diameter value : 0.01

■ 3 elements added to the Boundary layer

■ 90 0000 elements in total

■ Comparison of the simulation (red) with experiments (blue)

Fluid-Structure Interaction
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■ Level Set Function for Free Surface Problems

■ Interface is defined by a implicit distance function, i.e., the level set function φ

■ Evolution of φ is computed with a convection equation

■ At the interface: φ = 0

■ Air or Liquid: φ ≠ 0

Fluid-Structure Interaction
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■ Sloshing in a Water Tank 

■ Moving Water Tank coming to a brutal halt

■ Sloshing occurs

■ Study of pendulum oscillations

Fluid-Structure Interaction

Pendulum

Water level
Tank
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■ Wave Impact on a Rectangular-Shaped Box:

■ Used to predict the force of impact on structure

■ The propagation of the wave shape can also be studied

■ Will be used and presented as a validation test case in the short term future

Fluid-Structure Interaction
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■ Source and Sink Problems

■ Complex free-surface problems with

■ Source and sink terms

■ Strong FSI coupling

■ Dynamic remeshing

■ Boundary layer mesh

Fluid-Structure Interaction
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■ Definition of the Discrete Elements

■ Particles are approximated with spheres via

■ *PART, *SECTION_SOLID

■ Coordinate using *NODE and with a NID

■ Radius, Mass, Moment of Inertia

■ Density is taken from *MAT_ELASTIC

Particle-Structure Interaction

*ELEMENT_DISCRETE_SPHERE_VOLUME

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

$#     NID       PID      MASS   INERTIA     RADII

30001         4  570.2710  6036.748      5.14

30002         5  399.0092  3328.938      4.57

30003         6  139.1240   575.004      3.21

*NODE

$--+---1-------+-------2-------+-------3-------+-------4---+---5---+---6

$#   NID               X               Y               Z      TC      RC

30001          -29.00           -26.8             8.7       0       0

30002          -21.00           -24.8            18.2       0       0

30003          -27.00           -14.7            21.2       0       0
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■ Definition of the Contact between Particles

■ Mechanical contact

■ Discrete-element formulation according to

[Cundall & Strack 1979]

■ Extension to model cohesion using capillary forces

■ Possible collision states

■ Depends on interaction distance

Particle-Structure Interaction

*CONTROL_DISCRETE_ELEMENT

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

$#   NDAMP     TDAMP      Fric     FricR     NormK    ShearK       CAP     MXNSC

0.700     0.400      0.41     0.001      0.01    0.0029         0         0

$#   Gamma    CAPVOL    CAPANG

26.4      0.66       10.0
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■ Definition of the Particle-Structure Interaction

■ Classical contact: *CONTACT_AUTOMATIC_NODES_TO_SURFACE_ID

■ Well-proven and tested contact definition

■ Benefits of the contact definition
□ static and dynamic friction coefficients

□ works great with MPP

■ Drawbacks of the contact definition
□ not possible to apply rolling friction

□ friction force is applied to particle center

■ New contact: *DEFINE_DE_TO_SURFACE_COUPLING

■ Damping determines if the collision is elastic or “plastic”

■ Benefits of the contact definition
□ static and rolling friction coefficients

□ friction force is applied at the perimeter

□ possibility to define transportation belt velocity

■ Drawbacks of the contact definition
□ sometimes problems with MPP

Particle-Structure Interaction
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■ Funnel Flow

■ Variation of the parameters in 

■ *CONTROL_DISCRETE_ELEMENT

■ *DEFINE_DE_TO_SURFACE_COUPLING

Particle-Structure Interaction

foamed clay dry sand wet sand fresh concrete “water”

$-------+-------1--------+--------2---------+--------3---------+--------4---------+--------5

RHO       0.80E-6           2.63E-6            2.63E-6 2.63E-6 1.0E-6

P-P Fric 0.57              0.57               0.57               0.10               0.00

P-P FricR 0.10              0.10               0.01               0.01               0.00

P-W FricS 0.27              0.30               0.30               0.10               0.01

P-W FricD 0.01              0.01               0.01               0.01               0.00

CAP             0     0                  1                  1                  1

Gamma     0.00              0.00            7.20E-8            2.00E-6             7.2E-8

$-------+-------1--------+--------2---------+--------3---------+--------4---------+--------5
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■ Drum Mixer

■ 12371 particles with two densities

■ Green: foamed clay

■ Blue:   sand

■ Hopper Flow

■ 17000 particles of the same kind

■ Radii from 1.5 – 3 mm

■ Static & rolling friction of 0.5 

Particle-Structure Interaction
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Particle-Structure Interaction

■ Large Deformations Demand for a Coupled Solution 

■ Drop of a particle-filled ball from 1m above the rigid ground

■ Inside:   1941 particles (dry sand)

■ Outside: 1.8 mm thick visco-elastic latex membrane
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■ Bulk Flow Analysis

■ Introduction of a particle source and “sink”

■ *DEFINE_DE_INJECTION

□ possibility to prescribe 

− location and rectangular size of the source

− mass flow rate, initial velocity

− min. and max. radius

■ Problem Description

■ Belt conveyor

■ Deformable belt

■ Transport velocity

■ Contact with rigid supports

■ Generated particles

■ Plastic grains

■ *DEFINE_DE_ACTIVE_REGION

□ definition via bounding box

Particle-Structure Interaction
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■ Introduction of *DEFINE_DE_BOND

■ All particles are linked to their neighboring particles through Bonds

■ Bonds represent the complete mechanical behavior of Solid Mechanics

■ Bonds are calculated from the Bulk and Shear Modulus of materials

■ Bonds are independent of the DEM

■ Every bond is subjected to

■ Stretching, bending

■ Shearing, twisting

■ The breakage of a bond results in Micro-Damage

which is controlled by a prescribed critical fracture energy release rate

Particle-Structure Interaction
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■ First Benchmark Test with Different Sphere Diameters

■ Pre-notched plate under tension

■ Quasi-static loading 

■ Material: Duran 50 glass 

■ Density: 2235kg/m3

■ Young’s modulus: 65GPa 

■ Poisson ratio: 0.2 

■ Fracture energy release rate: 204 J/m2

■ Case I

■ 4000 spheres  r = 0.5 mm 

■ Crack growth speed: 2012 m/s 

■ Fracture energy: 10.2 mJ

■ Case II

■ 16000 spheres  r = 0.25 mm 

■ Crack growth speed: 2058 m/s 

■ Fracture energy: 10.7 mJ

■ Case III

■ 64000 spheres  r = 0.125 mm 

■ Crack growth speed: 2028 m/s 

■ Fracture energy: 11.1 mJ

Particle-Structure Interaction
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■ Fragmentation Analysis with Bonded Particles

Particle-Structure Interaction

Energy Density Energy Density

Crack branching Path                      Fragmentation
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■ Pre-Cracked specimen

■ Loading plates via *CONTACT_CONSTRAINT_NODES_TO_SURFACE

■ Pre-Cracks defined by shell sets

Particle-Structure Interaction
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Conclusion

■ One Code for Multi-Physics Solutions
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Conclusion

■ Finally, LS-DYNA can boil water!

■ “Test Drivers” Welcome!

■ Information on EM solver: www.lstc.com/applications/em

■ Information on ICFD solver: www.lstc.com/applications/icfd
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Thank you for your attention!

Your LS-DYNA distributor and more

■ Test Drivers Welcome!

■ Information on EM solver: www.lstc.com/applications/em

■ Information on ICFD solver: www.lstc.com/applications/icfd


