Coupling Possibilities in LS-DYNA: Development Status and Sample Applications

I. Çaldichoury¹, F. Del Pin¹, P. L'Eplattenier¹, D. Lorenz², <u>N. Karajan²</u> ¹ LSTC, Livermore, USA ² DYNAmore GmbH, Stuttgart, Germany

NAFEMS European Conference: Multiphysics Simulation 16 – 17 October 2012, Frankfurt, Germany

Outline

- Introduction
- Applications
- Conclusion

Introduction

Park & Felippa: Partitioned analysis of coupled systems. In Belytschko & Hughes (eds.): Computational Methods for Transient Analysis. Amsterdam 1983, pp. 157–219

Coupled Problems

- Dynamic Interaction of physically or computationally heterogeneous components
- Interaction is multi-way

Partitioning or splitting of a coupled problem

- Coupled Multi-Field Problems
 - The individual field equations are also functions of the other field
 - Example: velocity and pressure fields for incompressible viscous flow
- Coupled Multi-Physics Problems
 - Multiple physical models or phenomena are handled simultaneously
 - Different discretization techniques are used for individual subproblems
 - Example: particle systems (DEM) interact with structures (FEM) on the same or multiple scales
 - Field variables represent different but interacting physical phenomena
 - Example: thermoelectricity combining heat conduction and electrodynamics

Classification of the Coupling

- Volume Coupled
 - Discretized field variables (DOF) are coupled on the same domain
 - Weak coupling
 - Thermo-mechanical problem
 displacement & thermal field
 - Strong coupling
 - Incompressible fluid flow
 velocity & pressure field
 - Electro-magnetical problem
 - electric field & magnetic flux density
 - Porous-media problems
 - □ displacement & pressure field
 - displacement, pressure & concentration fields

- Surface Coupled
 - Discretized field variables (DOF) are coupled at an interface surface
 - Weak coupling
 - Mechanical contact
 - Heat transmission
 - Structural sound emission
 - Fluid-structure interaction (low-density fluids)
 - Strong coupling
 - Fluid structure interaction (high-density fluids)

Solution of Coupled Problems

- Spatial semi discretization
 - Finite-Element Method (FEM)
 - Finite-Difference Method (FDM)
 - Finite-Volume Method (FVM)
 - Arbitrary Lagrange Eulerian (ALE)
 - Boundary-Element Method (BEM)
 - Discrete-Element Method (DEM)
 - Smoothed Particle Hydrodynamics (SPH)
 - Element-Free Galerkin (EFG)
- Time integration
 - Implicit and explicit time-stepping schemes
 - Monolithic or direct approach
 - $\hfill\square$ the problem is treated monolithically
 - □ all components are integrated with the same scheme
 - Partitioned or iterative approach
 - system components are treated as isolated entities
 - separate time integration with arbitrary schemes
 - subcycling to account for different time scales
 - prediction, substitution, and synchronization techniques apply

One-Code Strategy for LS-DYNA

"Combine the multi-physics capabilities into one scalable code for solving highly nonlinear transient problems to enable the solution of coupled multi-physics and multi-stage problems" -- John Hallquist (2012)

- Presented Simulations in the field of
 - Thermo-mechanical coupling
 - Electro-magnetical coupling
 - Fluid-structure interaction
 - Particle-structure interaction

5

Thermo-Mechanical Coupling

Solvers are Connected in a Staggered Solution Scheme

Application: Hot stamping of high strength steel

Thermal Coupling Effects

v ×

Plastic work to heat conversion

$$w_{pl} = \rho c_p \Delta T = \eta \int_{\varepsilon_{pl}} \sigma^{y} d\varepsilon_{pl}$$

Friction-induced heat
 Friction coefficient is very high (0.4 ...0.6)

Note: These are effects of second order in hot stamping

7

Closed contact heat transfer in LS-DYNA

Subcycling of the Thermo-Mechanical Coupling

The "critical" implicit thermal timestep is usually some orders of magnitude greater than the critical explicit mechanical timestep

$$\Delta t_{therm} \leq \frac{1}{12} \cdot \frac{l^2}{a} \quad ; \quad a = \frac{\lambda}{\rho \cdot c}$$

Model must be able to respond as fast as real life [*Owen* 1993]

- λ : thermal conductivity
- c: heat capacity

 $\rho: {\rm density}$

$$\Delta t_{mech} \leq \frac{l}{c} \quad ; \quad c = \sqrt{\frac{E}{\rho \left(1 - \nu^2\right)}}$$

CFL Condition

E : Youngs modulus v : Poisson's ratio ρ : density

- Example: Steel at room temperature with 1 mm edge length $\Delta t_{therm} = 7.523 \cdot 10^{-3} \text{ s}$ $\Delta t_{mech} = 1.844 \cdot 10^{-7} \text{ s}$
- Note: Make sure the thermal timestep is small enough to capture the mechanical motion

$$\Delta t_{\text{max}} = \frac{d_{\text{max}}}{v_{\text{max}}}$$
; $d_{\text{max}} = 1 \dots 5 \text{ mm}$; $v_{\text{max}} = 1 \dots 5 \text{ m/s}$

Use of Thermal Contact to Enhance Modeling Skills

- Die surface geometry accurately modeled with shell elements
- Die volume geometry modeled with volume elements
- Shell and volume mesh coupled with contact definition

- Heat transfer from blank to die surface shell by thermal contact
- Heat dissipation into the dies by thermal contact between shell and volume mesh

Cooling Simulation – Is the Coupling Necessary?

Thermo-Mechanical Coupling

Coupled Simulation of Forming and Cooling due to Contact with the Die

LS-DYNA KEYWORD DECK BY LS-PRE Time = 17.862 Contours of Temperature min=702.79, at node# 9001295

max=879.144, at node# 9000545

Thermo-Mechanical Coupling

Fringe Levels 8.800e+02

8.600e+02 8.400e+02 8.200e+02 7.800e+02 7.800e+02 7.600e+02 7.400e+02 7.200e+02 7.000e+02 6.800e+02

Modeling Phase Transformations

*MAT_UHS_STEEL (*MAT_244)

 Paul Akerstrom, "Modeling and Simulation of Hot Stamping" Ph.D. Thesis, Lulea University of Technology, 2006

Input includes:

- 1. 15 element constituents
- 2. Latent heat
- 3. Expansion coefficients
- 4. Phase hardening curves
- 5. Phase kinetic parameters
- 6. Cowper-Symonds parameters

Output includes:

- 1. Austenite phase fraction
- 2. Ferrite phase fraction
- 3. Pearlite phase fraction
- 4. Bainite phase fraction
- 5. Martensite phase fraction
- 6. Vicker's hardness distribution
- 7. Yield stress distribution
- Phase Transformations due to Different Cooling Rates

Electro-Magnetical Coupling

Electro-Magnetic Solver and Connection to Mechanical and Thermal Solvers

Solvers are connected in a staggered solution scheme

	EM Solv	er (SMP & MP)
Ampere's Law:	$\nabla \times \frac{\mathbf{B}}{\mu} = j + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$	$\nabla \times (\cdot)$: rotation $\nabla \bullet (\cdot)$: divergence
Faraday's Law:	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	E : electric field B : magnetic flux density
Gauss law: Gauss flux theor	$\nabla \bullet \mathbf{B} = 0$ em: $\nabla \bullet \mathbf{E} = 0$ Equation	j: total current density j_s : source current density
Continuity: Ohm's law:	$\nabla \bullet \mathbf{j} = 0$ $\mathbf{j} = \boldsymbol{\sigma} \mathbf{E} + \mathbf{j}_s$	ε, μ , and σ : material electrical properties
Displacement	Lorentz forces $\mathbf{F} = \rho_e \mathbf{E} + \mathbf{j} \times \mathbf{B}$	Temperature Joule heating $p = \frac{dQ}{dt} = j^2 R$
Mechanical Sol	Ver Explicit / Implicit	Thermal Solver Implicit (SMP & MPP)
LISTC Livermore Software Technology Corp.		

Current EM Status

- All EM solvers work on solid elements for conductors
 - Hexahedrons, tetrahedrons, wedges
- Shells can be used for insulator materials
- Available in both SMP and MPP
- 2D axi-symmetric available
- The EM fields as well as EM force and Joule heating can be visualized in LS-PREPOST :
 - Fringe components
 - Vector fields
 - Element histories
- Only Available in LS-DYNA 980

EM Solver Validation

Some T.E.A.M. (Testing Electromagnetic Analysis Methods) test cases have been used to validate LS-DYNA's EM accuracy and to demonstrate its features

T.E.A.M. 28 : An Electrodynamic Levitation Device

- Conducting plate that levitates over two exciting coils
- Plate oscillates and progressively reaches an equilibrium position

max displacement factor=2

EM Solver Validation (Cntd.)

 Heating of a steel plate by induction
 In collaboration with: M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

experiment

Electro-Magnetical Coupling

- Subcycling for the Induced Heating Problem
 - Problem: The coil's current oscillation period is smaller than the total time of the problem
 - Consequence: Many small EM time steps needed
 - Solution: Induced heating solver with "micro" and "macro" time step
 - Application: Conducting plaque moving through coils that induce Joule heating

EM Applications

- Magnetic Metal Welding
 - Current density fringe

Sheet forming on conical die

 In collaboration with:
 M. Worswick & J. Imbert University of Waterloo, Canada

Forming of a tube-shaft joint

- In collaboration with
 - Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz Dipl.-Ing. Christian Scheffler
 - Poynting GmbH, Dortmund, Dr Ing, Charlotto Boorwald
 - Dr.-Ing. Charlotte Beerwald

21

Fluid-Structure Interaction

Solver for Incompressible Fluid Dynamics (ICFD)

- Weak and strong coupling to mechanical solver
- Monolithic solution of the thermal fields

Current ICFD Status

- Based on a stabilized finite-element formulation
- Stand alone implicit CFD solver with coupling to the
 - Mechanical solver (FSI problems)
 - Thermal solver (Conjugate heat transfer problems)
- ALE approach for mesh movement
- Boundaries of FSI are Lagrangean and deform with the structure
 - Strong coupling available for implicit mechanics (more robust but more costly)
 - Loose coupling for explicit mechanics (less robust and less costly)
- Only Available in LS-DYNA 980

- Automatic Mesh Generation and Refinement
 - Automatic generation of the volume mesh and the boundary layer mesh
 - Possibility to specify local mesh size for better resolution

Error estimators may be used to trigger adaptive re-meshing

ICFD Solver Validation

- Flow around a cylinder
 - Re=40: Symmetric flow separation

Re=100: Von Karman Vortex Street

- Mesh used for the simulation
 - Cylinder element size based on a unity Diameter value : 0.01
 - 3 elements added to the Boundary layer
 - 90 0000 elements in total

Comparison of the simulation (red) with experiments (blue)

Level Set Function for Free Surface Problems

Interface is defined by a implicit distance function, i.e., the level set function φ

- Evolution of φ is computed with a convection equation
- At the interface: $\varphi = 0$

- Sloshing in a Water Tank
 - Moving Water Tank coming to a brutal halt
 - Sloshing occurs
 - Study of pendulum oscillations

Wave Impact on a Rectangular-Shaped Box:

- Used to predict the force of impact on structure
- The propagation of the wave shape can also be studied
- Will be used and presented as a validation test case in the short term future

Source and Sink Problems

- Complex free-surface problems with
 - Source and sink terms
 - Strong FSI coupling
 - Dynamic remeshing
 - Boundary layer mesh

Particle-Structure Interaction

- Definition of the Discrete Elements
 - Particles are approximated with spheres via
 - *PART, *SECTION_SOLID
 - Coordinate using *NODE and with a NID
 - Radius, Mass, Moment of Inertia

$$M = V \rho = \frac{4}{3} \pi r^3 \rho \qquad I = \frac{2}{5} M r^2 = \frac{8}{15} \pi r^5 \rho$$

Density is taken from *MAT_ELASTIC

456+78
TIA RADII
748 5.14
938 4.57
004 3.21
36
Y Z TC RC
6.8 8.7 0 0
4.8 18.2 0 0
4.7 21.2 0 0

Definition of the Contact between Particles

- Mechanical contact
 - Discrete-element formulation according to [Cundall & Strack 1979]

Extension to model cohesion using capillary forces

*CONTROL_DISCRETE_ELEMENT									
\$	-+1	+2	+3		+5	+6	-+7	+8	
\$#	NDAMP	TDAMP	Fric	FricR	NormK	ShearK	CAP	MXNSC	
	0.700	0.400	0.41	0.001	0.01	0.0029	0	0	
\$#	Gamma	CAPVOL	CAPANG						
	26.4	0.66	10.0						

Possible collision states

Definition of the Particle-Structure Interaction

- Classical contact: *CONTACT_AUTOMATIC_NODES_TO_SURFACE_ID
 - Well-proven and tested contact definition
 - Benefits of the contact definition
 - static and dynamic friction coefficients
 - □ works great with MPP
 - Drawbacks of the contact definition
 - not possible to apply rolling friction
 - □ friction force is applied to particle center

New contact: *DEFINE_DE_TO_SURFACE_COUPLING

- Damping determines if the collision is elastic or "plastic"
- Benefits of the contact definition
 - □ static and rolling friction coefficients
 - □ friction force is applied at the perimeter
 - possibility to define transportation belt velocity
- Drawbacks of the contact definition
 - $\hfill\square$ sometimes problems with MPP

Funnel Flow

- Variation of the parameters in
 - *CONTROL_DISCRETE_ELEMENT
 - *DEFINE_DE_TO_SURFACE_COUPLING

\$+-	1	2-	3	4	l5
RHO	0.80E-6	2.63E-6	2.63E-6	2.63E-6	5 1.0E-6
P-P Fric	0.57	0.57	0.57	0.10	0.00
P-P FricR	0.10	0.10	0.01	0.01	0.00
P-W FricS	0.27	0.30	0.30	0.10	0.01
P-W FricD	0.01	0.01	0.01	0.01	0.00
CAP	0	0	1	1	1
Gamma	0.00	0.00	7.20E-8	2.00E-6	5 7.2E-8
\$+-	1	2	3	4	5

Particle-Structure Interaction

Drum Mixer

- 12371 particles with two densities
 - Green: foamed clay
 - Blue: sand

Hopper Flow

- 17000 particles of the same kind
 - Radii from 1.5 3 mm
 - Static & rolling friction of 0.5

Large Deformations Demand for a Coupled Solution

- Drop of a particle-filled ball from 1m above the rigid ground
 - Inside: 1941 particles (dry sand)
 - Outside: 1.8 mm thick visco-elastic latex membrane

Particle-Structure Interaction

Bulk Flow Analysis

Introduction of a particle source and "sink"

*DEFINE_DE_INJECTION

- $\hfill\square$ possibility to prescribe
 - location and rectangular size of the source
 - mass flow rate, initial velocity
 - min. and max. radius

*DEFINE_DE_ACTIVE_REGION

definition via bounding box

Problem Description

- Belt conveyor
 - Deformable belt
 - Transport velocity
 - Contact with rigid supports
- Generated particles
 - Plastic grains

Introduction of *DEFINE_DE_BOND

- All particles are linked to their neighboring particles through Bonds
- Bonds represent the complete mechanical behavior of Solid Mechanics
- Bonds are calculated from the Bulk and Shear Modulus of materials
- Bonds are independent of the DEM
- Every bond is subjected to
 - Stretching, bending
 - Shearing, twisting

The breakage of a bond results in Micro-Damage which is controlled by a prescribed critical fracture energy release rate

First Benchmark Test with Different Sphere Diameters

- Pre-notched plate under tension
 - Quasi-static loading
 - Material: Duran 50 glass
 - Density: 2235kg/m³
 - Young's modulus: 65GPa
 - Poisson ratio: 0.2
 - Fracture energy release rate: 204 J/m²
- Case I
 - 4000 spheres r = 0.5 mm
 - Crack growth speed: 2012 m/s
 - Fracture energy: 10.2 mJ
- Case II
 - 16000 spheres r = 0.25 mm
 - Crack growth speed: 2058 m/s
 - Fracture energy: 10.7 mJ
- Case III
 - 64000 spheres r = 0.125 mm
 - Crack growth speed: 2028 m/s
 - Fracture energy: 11.1 mJ

Fragmentation Analysis with Bonded Particles

Particle-Structure Interaction

Pre-Cracked specimen

- Loading plates via *CONTACT_CONSTRAINT_NODES_TO_SURFACE
- Pre-Cracks defined by shell sets

max displacement factor=20

Conclusion

Conclusion

Finally, LS-DYNA can boil water!

"Test Drivers" Welcome!

Information on EM solver:

www.lstc.com/applications/em

Information on ICFD solver: www.lstc.com/applications/icfd

Thank you for your attention!

Test Drivers Welcome!

- Information on EM solver:
- www.lstc.com/applications/em
- Information on ICFD solver: www.lstc.com/applications/icfd

