

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Inverse Parameteridentifikation mittels Wechselbiegeversuch zur Ermittlung der nicht isotropen Verfestigung von Blechwerkstoffen

M. Wieland, M. Biasutti, M. Kaupper, M. Merklein

- Motivation
- Versuchsmethodik
- Parameteridentifikation
- Berechneter Bauschinger-Effekt
- Zusammenfassung und Ausblick

Bauschinger-Effekt bei Belastungswechsel

- Wechselbelastung beim Tiefziehen von Blechwerkstoffen
- Änderung der Fließspannung und der Verfestigung

Isotrope Verfestigung + Kinematische Verfestigung = Kombinierte Verfestigung

Eingangsdaten für Werkstoffmodelle mit kombinierter isotropkinematischer Verfestigung in der Umformsimulation erforderlich

©LFT 12/13117- 3

Zielsetzung

Zielsetzung

- Evaluierung eines Biegeversuchs mit wechselnder Belastung zur effizienten, inversen Parameteridentifikation
- Abgleich und Bewertung mit Zug-Druck-Resultaten

Lösungsmethodik

Versuchsmethodik zur Abbildung des Bauschinger-Effekts

	Zug-Druck- Versuch	Zykl. Scherversuch	Wechselbiege- versuch
Experimente			
			-
Durchführung Versuch	aufwendig	aufwendig	einfach
Anforderung Versuchsaufbau	anspruchsvoll	anspruchsvoll	moderat
Integration Materialmodelle	direkt	direkt/invers	nur invers
	Anwendung	Forschung	Forschung

Parameteridentifikation mittels Zug-Druck-Versuch

Ausgleichskurve für den Ein-Element-Test mit LS-Opt $\rightarrow \sigma_x - \varepsilon_x^{tot}$

- Einfluss der miniaturisierten Probe auf die Ergebnisse
- Allgemeine Ausknickgefahr bei Zug-Druck-Versuchen

Ŀī

Parameteridentifikation mittels Wechselbiegeversuch

- Ausgleichskurve für das Modell mit LS-OPT $\rightarrow \frac{1}{4}$ Kraft(x) Weg(x)
- Hohe Steifigkeit des Aufbaus und präzise Führung
- Flexible Prüfbedingungen realisierbar (z.B. Variation der Probenbreite, des Backenabstands und –radius)
- Einfache und robuste Versuchsdurchführung

Ŀī

Bauschinger-Koeffizienten für AC 170 PX

Ŀ

Bauschinger-Koeffizienten für AC 170 PX

- *MAT_133: ungenügende Abbildung des Ellenbogenbereichs
- *MAT_226: Gute Übereinstimmung mit Experiment

Ŀ

Bauschinger-Koeffizienten für CPK-60/80

©LFT 12/13117- 10

Bauschinger-Koeffizienten für CPK-60/80

- *MAT_133: ungenügende Abbildung des Ellenbogenbereichs
- *MAT_226: Gute Übereinstimmung mit Experiment

Zusammenfassung

- Prinzipielle Eignung des WBV zur Abbildung des Bauschinger-Effekts
- Einfachere und robustere Versuchsdurchführung als ZDV
- Ermittlung von Bauschinger Koeffizienten lediglich invers möglich
- Verwendetes konstitutives Materialmodell hat größten Einfluss auf Abbildungsgenauigkeit
- Beste Abbildungsgenauigkeit mit *MAT_226

Ausblick

- Abgleich der Abbildungsgenauigkeit nach Rückfederungsberechnung mittels Demonstratorbauteil
- Verbesserung der Genauigkeit durch Verwendung mehrerer Rückfederungsterme

Vielen Dank für Ihre Aufmerksamkeit