Under the Hood of Implicit LS-DYNA

Cleve Ashcraft
Roger Grimes
Brad Maker
May 2003

Implicit in LS-DYNA v. 970

- LS-DYNA v. 970 has an extensive set of Implicit capabilities.
 - Implicit Time Simulation
 - static, dynamic, damping
 - Switching between Implicit and Explicit
 - automatic or user specified
 - Eigenanalysis
 - vibration or buckling
 - intermittent during an explicit or implicit simulation
 - Constraint and Attachment Mode Extraction
- Brad Maker gave several examples in his talk.
Overview of Presentation

This presentation will give you an overview of

- How we implemented all of these implicit features.
- Integrated implicit with our flagship explicit code.
- Overview of our ongoing development of an MPP implicit capability.

Implicit uses Explicit

- Explicit already performed many of the computations required for Implicit.
 - Force computations
 - From elements
 - From penalty constraints
 - Constraint application
 - Detection of contact
 - Output
Reverse Communication

- We implemented Implicit using Reverse Communication
 - Called from Explicit
 - On return, Implicit sets flags to tell Explicit what to do next
 - Compute forces
 - Compute elemental stiffness matrices
 - Perform Contact analysis
 - Update history variables
 - Perform output
- Allows reuse of same contact, material, and element subroutines.

Inside Implicit

Inside Implicit we can perform

- Linear Analysis
- Nonlinear Analysis
- Eigenanalysis
 - Newton or Quasi-Newton
 - Automatic time step selection
 - Static or Dynamic
 - Damping
 - Arc Length Methods
- Constraint and Attachment Mode Extraction
Constrained Linear Algebra Problems

- All implicit analyses need to solve

\[Ku = f \]

Subject to \(Cu = d \)

Or

\[K\Phi = M\Phi\Lambda \]

Subject to \(C\Phi = 0 \)

Setting up the Linear Algebra Problem

- Using the same data structures as explicit, Implicit computes the constraint matrix \(C \) and constraint right-hand-side \(d \).
- Implicit uses explicit to compute elemental stiffness matrices, contact stiffness matrices, and forces.
LCPACK

- We have implemented a powerful and efficient Linear Constraint Package (LCPACK)
 - Automatically determines dependent (slave) and independent (master) sets of variables from the constraint matrix.
 - Applies the constraints to form reduced linear algebra problems
 - Computes the dependent variables from the independent ones.

Handling of Constraints in LS-DYNA

- We start with the full constraint matrix and perform an automatic partitioning of the dofs into the form

\[C_{D,D} \mathbf{u}_D + C_{D,I} \mathbf{u}_I = \mathbf{d} \]

where \(C_{D,D} \) is a full rank, square matrix that can be stably inverted.
The Approach in LS-DYNA v. 970

- We factor $C_{D,D}$ using its special structure to yield

$$u_D + C^{-1}_{D,D} C_{D,I} u_I = C^{-1}_{D,D} d$$

or

$$u_D + \hat{C}_{D,I} u_I = \hat{d}$$

- This form allows for direct substitution to compute reduced linear algebra problems.

Linear Algebra Infrastructure

- We have 3 different linear algebra equation solvers
 - MF (in-house multifrontal solver)
 - BCSLIB-EXT (multifrontal solver with extensive out-of-memory capabilities from Boeing)
 - Package of Iterative Methods

- BCSLIB-EXT, the industry standard block shift and invert Lanczos eigensolver from Boeing
Serial and SMP

- Currently Implicit operates in serial and SMP modes.
- Next goal is to operate efficiently in MPP.

MPP Implementation Plan

- Explicit already operates in MPP so Implicit automatically gets MPP implementation of
 - Elemental force and stiffness computations
 - Contact
- We have a functioning MPP multifrontal solver DMF (MPP implementation of our in-house solver)
- We are developing and testing MPP implementation of LCPACK
- A parallel eigensolver (based on Lanczos technology from Boeing) is being developed.
Conclusion

- LS-DYNA v. 970 has an extensive set of implicit analysis capabilities.
- Implicit can handle most of the modeling features provided by LS-DYNA.
- We are developing an MPP implementation of all of these capabilities.