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Abstract: 
 
To get a more precise description of the material behavior of automotive parts in crash scenarios it is 
important to take into account the production processes of the formed parts [10]. For this purpose 
different thickness and strain tensor data from the results of the stamping simulation have to be 
mapped to the car components. Typically different coordinate systems are being used for the 
stamping and the crash simulation. Also mesh sizes are different in stamping and crash applications. 
Before the necessary strain interpolation process can be started (*include stamped part), the stamped 
part and the crash part must be matched. For this purpose different algorithms from computer graphics 
programming have been compared and one algorithm (Iterative Closest Point) was implemented and 
tested on different configurations. The work was made by Markus Brüchle as his Diploma Thesis and 
supervised by Uli Göhner at the University of Applied Sciences Kempten. 
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1 Problem 

1.1 Application in automotive industry 

In stamping applications the drawing direction points into the z-direction. As in the crash application a 
lot of different parts with different drawing directions are coming together, a matching is necessary 
before the interpolation process of the stamped data can be performed [10]. The matching can be 
described as follows: Given two discretized surfaces, namely stamped part and crash part, we look for 
an appropriate transformation, which minimizes the volume between these two surfaces. Stamped 
part and crash part are similar, but not necessarily identical, because of different mesh sizes used in 
stamping and crash applications. Both surfaces are given in discretized form. The element form is not 
of any importance, as the algorithms we will investigate only need a node set for the description of the 
surfaces. Such type of matching problems are common in image processing and computer graphics, 
e.g. for pattern recognition or other purposes. Therefore in the next chapter different algorithms from 
computer graphics are being compared. 

1.2 Mathematical description 

Let {xi} and {yi} be the two node sets, which are to be matched. Then we look for the rotation matrix R, 
the transformation vector t and the scaling factor c, so that the squared sum of the node differences e 
is minimal: 
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2 Comparison of different matching algorithms 

2.1 Umeyama Algorithm 

In 1991 Umeyama [9] presents an algorithm based on the papers of Horn, Arun et al [1], [5], [6] which 
gives a complete solution of our problem which is also called the “problem of absolute orientation”. We 
denote with X={x1,…. ,xn}, Y={y1,…. ,yn}, ∑XY the covariance Matrix, µX and µY the mean values and σX 
and σY the standard deviations of X and Y. Given the singular value decomposition of ∑XY with UDV
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and defining the Matrix S: 
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Then if rank(∑XY) = n, the solution for R, t and c can be identified by the following formula: 
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By formula (2) we could directly compute the solution to our problem, however there are 2 conditions, 
which cannot be ensured in practice: The number of points in X and Y must be the same and the 
correspondence between the points must be known. In practice the stamped part and the crashed part 
differ, because of different mesh sizes, so that the dimension of the two vectors X and Y are different, 
too. Also the correspondence between X and Y requires an identical mesh and identical node 
numbering within crash and stamped part. Due to that reason, the direct computation of the solution 
through formula (2) is impossible. Nevertheless, if the meshes in the crash and stamped part are 
identical and the node numbering is the same, the Umeyama Algorithm gives a very fast and direct 
solution to our problem.   
 

2.2 Iterative Closest Point 

Besides the direct approach following Umeyama also iterative procedures have been developed. In 
1992 Paul Besl and Neil McKay from General Motors published the Iterative Closest Point (ICP) 
algorithm [2]. If the node numbering is different in the two parts, it is unknown, which point from the 
original point set corresponds to which target object. This problem is being solved by an iterative 
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procedure. For each point in the original point set the target object with the smallest distance (“closest 
point”) will become the partner. Possible target objects could be e.g. points or triangular elements. 
This could be the wrong choice in the early stages of the iteration processes, but will become better 
the closer the two parts get.  
Let {xi} and {yi} be again two node sets, which should be matched and denote by Z=C(X,Y) the 
operator, which gives the closest point to a given configuration. Then to this configuration the solution 
R,c,t can be calculated from (2). Let Q(X,Y) be the operator which gives the registration vector q, the 
new point set q(X)=cRX+t and the resulting least square error e. Then the algorithm reads as follows: 

1. Initialize R=I, t=0, c=1, X0=X 
2. Iterate until |ek-ek-1|<ε (given accuracy): 

a. Compute closest Point Z=C(Xk,Y) 
b. Compute new point set Xk+1 =Q(Xk) and corresponding least square error ek 

It can be shown, that this algorithm converges only to a local minimum. By using a good initial 
configuration X0 for the applications we want to address in this paper, we can easily get the right 
solution. The numerical costs are O(n

2
) per iteration. As the dimension of X and Y must be still the 

same, different variants of this ICP are considered in the next chapter 
 

2.3 Trimmed ICP and Fractional ICP 

To overcome also the problem arising from different dimensions for X and Y different variants of the 
ICP are proposed. In the Trimmed ICP algorithm a Least Trimmed Squares (LTS)-approach is 
followed [3], [8]. LTS means, that only a (“trimmed”) subset of all error contribution is used for the 
minimization process. The FICP [6] is an improved version of the Trimmed ICP. For the FICP it can be 
shown, that it converges to a local minimum. Also the overall numerical efforts are smaller than in the 
Trimmed ICP. As a consequence the FICP was chosen in this paper and tested in chapter 4 for the 
metal stamping application. 
 

3 Mesh simplification 

3.1 Reasons for the Mesh simplification 

 
As the numerical effort for the FICP is still considerable and the algorithm has to be started with 
several different start conditions to ensure a global optimum it was decided to apply a mesh 
simplification algorithm. After simplifying the mesh, the FICP will be started based on the reduced 
point (or element) set. Of course, the mesh simplification must have the property, not to change the 
typical shape of the geometry, so that the transformation which is determined based on the simplified 
geometry coincides with the transformation on the full mesh. Mesh simplification is a standard 
procedure, which is applied in computer graphics to reduce the effort for rendering of objects in far 
distance to the camera. Figure 1 shows a typical mesh simplification of a geometrical object on 
different simplification levels starting from 5804 triangles reducing to 64 triangles. 

 
Figure 1: Mesh simplification example [4] 

A lot of research work has been done in the last years concerning mesh simplification. For our 
application the Quadric Error Metric Algorithm (QEM) as described by Garland and Heckbert in 1997 
[4] was chosen. 
 
QEM is based on pairwise merging of two points. After merging two points v1 and v2 the merged point 
v1 is moved to a new position v. All degenerated faces and edges will then be deleted. The decisive 
part for a good simplification method is the selection criteria for the merging process and the 
determination of the new position v. The selection process is based on a quadratic form ∆(v)=v

T
Qv, 

with v denoting a vertex in barycentric coordinates. The 4x4-Matrix Q is based on some heuristic 
assumptions as shown in [4].  The resultant algorithm can produce good approximations in fairly short 
amount of time. In figure 2 a terrain model of crater lake is shown. The fine model consists of 199.114 

Forming to Crash I

H - I - 25



6. LS-DYNA Anwenderforum, Frankenthal 2007 
 

 
© 2007 Copyright by DYNAmore GmbH 

faces, the reduced model contains only 999 faces. Although the model is reduced considerably, the 
major details of the original model remain. 

 
Figure 2: Terrain model of crater lake [4] 

4 Testsoftware 

To test the algorithms for the purpose of mapping data from stamped parts an appropriate test 
software was developed. This software can read in LS-DYNA keyword files and calculates the 
necessary matrices for the transformation. Different parameter settings can be tried and the 
performance can be measured on different geometries. 
 

4.1 User interface 

The only purpose was to investigate different algorithms on a couple of test configurations and to test 
the performance of the algorithm on geometries with different omplexity. Therefore a simple graphical 
user interface was designed as shown in figure 3: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: User Interface of ShapeMatchTest 
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The User interface is divided horizontally into three different sections: The load and display section, 
the reduce section and the match section. There are two graphic windows in the vertical direction for 
both the initial geometry and the geometry which is to be matched. The crash part could be loaded 
and displayed e.g. on the left window, the stamped part on the right window. In the reduce section the 
geometry could be simplified for performance purposes. To do this the number of triangles, which the 
simplified mesh should contain as maximum could be put in and the mesh reduction process could be 
started. A sample geometry of a car floor is shown in figure 4: 
 

 
Figure 4 Sample geometry of a car floor 

 
After the mesh reduction process is finished, a transformation of the geometry could also be 
performed by hand. This is only for testing purposes. By clicking “Move over” the two objects will be 
played into the same graphics window as shown in figure 5: 

 
Figure 5: Simplified geometry before matching 

To get a good starting point for the ICP algorithm the center of gravity and the mean normal vector of 
the two objects are being aligned by choosing “align surface normal”. Then the matching process 
could be started. The result of the matching process could be visibly checked and data about the 
computing time used for the different steps are being output in the window in the bottom. The results 
with simplified and detailed geometry are shown in figures 6 and 7: 

Forming to Crash I

H - I - 27



6. LS-DYNA Anwenderforum, Frankenthal 2007 
 

 
© 2007 Copyright by DYNAmore GmbH 

 
Figure 6 Simplified mesh after matching 

 
Figure 7: Detailed geometry after matching 

4.2 Accuracy 

Of course the accuracy is strongly dependent on the simplification level, which is used for the 
matching algorithm. Also it is important to use at least six different initial configurations to really get to 
the right local minimum in the underlying optimization process. This means, that the angle must not be 
chosen larger than 60 degrees.  For our tests the number of triangles for the simplified geometry was 
chosen to 2000 triangles, which is a good compromise between computing time and accuracy. 

4.3 Performance 

Different geometries have been tested. First the performance of the mesh simplification algorithm was 
investigated. For an example with 34.808 triangles the following CPU-time was detected: 
 

Reduction to CPU time in ms 

20.000 1.359 

10.000 1.406 

1.000 1.406 

100 1.469 

Table 1: CPU time for the mesh simplification of a sample geometry with 34.808 triangles 

Now the performance of the matching algorithm itself was tested. For an angle segment of 40 degrees 
the matching will be started with nine different initial configurations. For the same sample problem the 
following CPU-time was evaluated: 

Number of triangles CPU time in ms 

10.000 117.359 

5.000 26.328 

1.000 1.015 

500 531 

Table 2: CPU time for the matching with different simplification levels 
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As mentioned in section 2.2 the computing costs grow with quadratic order O(n
2
), with n the number of 

triangles. This again confirms the necessity of a proper mesh simplification before applying the 
matching algorithm. 

5 Summary 

A shape matching algorithm has been introduced and applied to the problem of mapping thickness 
and residual strains of stamped parts to crash models. The special algorithm uses mesh simplification 
and gets good accuracy paired with good performance and can be used for this purpose in future.   
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