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Summary: 
 
The use of multi-disciplinary optimisation methods (MDO) in the development process of complex 
automotive structures is often hindered by several problems. The required resources for very 
expensive simulations such as crash or 3D CFD analyses rapidly exceed the means available – 
especially whenever many input parameters, disciplines or load cases are involved. Furthermore, we 
have experienced that it can be difficult to assure stable runs of simulation processes over a longer 
period of time. As a result, ‚trivial’ problems such as missing licenses, an overload in network or hard 
disk resources can lead to a termination of the optimisation process. Not to mention that an 
optimisation run based on different disciplines can only start once all disciplines involved have set up 
their respective simulation models. Even a simple change in only one affected discipline would 
necessitate the optimisation run to start from scratch (with simulations for all load cases/disciplines to 
be redone). 
Here, metamodeling techniques can lead to a significant increase in efficiency since all information on 
the system behaviour gained from former analyses can be reused e.g. for optimisation runs or 
sensitivity analyses. In addition to this data storage functionality, the use of metamodels also 
decouples the occupation of computing resources from the actual use of the information. That means 
that idle CPU time can be used to collect more information on the product or system leading to 
reduced computation times in the actual optimisation method. Problems in particular simulation runs 
do not automatically result in a termination of the MDO method, but can easily be repeated. 
Consequently, it is also possible to evaluate the different disciplines independently even when other 
disciplines cannot provide a final simulation model yet. All these advantages together result in a much 
more efficient usage of computation resources. 
However, the complexity and diversity of metamodeling techniques often prevent the potential user 
from these benefits. Typically, the choice between the different metamodel formulations is not easy to 
make. 
In this paper, an approach is presented which allows for an automated model selection and fitting 
process. This approach enables the user to use metamodels rid of the complicated selection and 
fitting process. This task is undertaken by an optimisation algorithm which automatically generates a 
large variety of metamodels and accesses their respective applicability by means of statistics. As a 
result, the user gets the most suitable metamodel for each load case or discipline individually and in 
addition important information about the accuracy of the approximation. 
The approach will be illustrated by a typical example of a multi-disciplinary optimisation of automotive 
structures. 
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Figure 1: Metamodels as surrogate formulations for complex simulations 

1 Motivation for using metamodeling techniques in optimisation tasks 
Today’s engineering tasks strongly depend on complex computer simulations e.g. by means of FEM. 
In order to design highly competitive products, numerical optimisation methods are often used to 
improve the product performance or to reduce the related costs. For the design of complex car 
structures however, many disciplines play a role in the assessment of product performance. Here, 
multi-disciplinary optimisation runs (MDO) are needed which are typically complicated by some 
hurdles. The most prominent difficulty is probably the excessive computational effort related to time-
consuming simulations such as crash or 3D-CFD analyses. Metamodeling techniques can significantly 
reduce this effort by exploiting a maximum of information that is hidden in the given data and by 
reusing this information for alternative designs. The complexity and diversity of metamodel 
formulations, however, impede many potential users to benefit from these advantages. Choosing a 
proper metamodel type is a difficult decision even for a metamodeling expert. 
To overcome these problems, we propose an approach to automated model selection and fitting which 
accomplishes the demanding process of choosing the right model type and fitting it to the given data. 
Fully automated by an optimisation algorithm, many different metamodels are set up and the 
appropriateness of their approximation is assessed based on statistical quality checks. As a result, the 
user gets a particular metamodel for each load case and conclusions regarding the fidelity of the 
approximation. If such error estimations can be evaluated locally for a specific metamodel, these local 
error estimators can be used to refine the model constantly after each optimisation iteration. This 
sequential metamodel update helps to find a tried and proven optimal design. 
 
 

2 Principles of metamodeling techniques 
Metamodels are global approximations (also termed surrogate models) used as temporary substitution 
for the original simulation code [1]. A metamodel replaces the relationship between input and output 
variables by a mathematical expression that is much cheaper to evaluate. Usually, an individual 
metamodel must be established for each single response value. In general, the metamodel can be set 
up to depend on selected inputs only -- omitting those variables with negligible or no impact on the 
selected response.  

For the generation of a metamodel, an appropriate number of sampling points (the so called training 
data) is needed. These points can be selected via design of experiments (DoE) techniques [2] to gain 
a maximum of information about the characteristics of the underlying relationship between input and 
output. A suitable DoE technique must be carefully chosen since each type of surrogate model has 
need of different attributes with respect to the distribution of the sampling points. However, some DoE 
methods exist that are suitable for a large set of different metamodel types. Based on a proper DoE 
technique the original simulation is performed for the designs appointed by the coordinates of the 
sampling points. With the training data obtained from these computer experiments, the metamodel can 
be fit to provide an efficient estimate for the original function [3]. 
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2.1 Pros and cons of metamodeling approaches 

Metamodels are advantageous especially since: 
- it is much cheaper to evaluate a metamodel than to perform a complex computer simulation. This 

yields a reduction in computational effort where many function evaluations are necessary (e.g. in 
optimisation or stochastic analyses). 

- By use of metamodels, the designer can easily explore the entire design space to get a more 
profound understanding of the system under investigation. 

- Metamodels can be used to combine information gathered from different sources, for instance 
analysis codes for different disciplines (e.g. fluids, structures, or thermo-dynamical problems), or 
physical experiments and computer simulations. An MDO in a typical simulation environment can 
only start once all contributing disciplines and load cases are properly defined i.e. a delay in one 
load case leads to a delay in the entire project. When using metamodels, the data mining is 
completely independent for all load cases involved, thus the first computations can start as soon as 
the first simulation model is ready. Especially, if some models proof to be incorrect at a later phase, 
only the affected metamodels have to be adjusted and the optimisation runs can be repeated (on 
the cheaper metamodels). 

- Parallel computing is simple, since in general the individual sampling points are appointed 
simultaneously. Hence, the necessary computer experiments can be performed independently and 
in parallel. 

- Metamodels can be used to smooth response values if noise is present in the observations. 
- In addition, metamodels can help to stabilise the optimisation runs. In general, it is very difficult to 

assure a stable simulation environment. “Simple problems” like missing licences, overloaded 
networks, or filled hard disks can easily cause the entire optimisation run to abort. If such problems 
occur during the collection of training data ,it is very simple to repeat the related simulations. 

The two main drawbacks with using metamodels are:  
1. The fitting of metamodels produces additional effort and costs. 
2. The question which metamodel formulation to choose for a specific application is not a trivial task. 

Even a metamodeling expert might have difficulties to pick the best model type.  
To overcome these drawbacks, an approach will be presented next that disburdens the user from this 
crucial but complex problems. In ClearVu Analytics many different metamodels are computed with the 
help of an internal optimisation algorithm. Based on statistics, their applicability and accuracy for each 
particular response variable is checked. As a result, the tool proposes a particular metamodel for each 
load case and offers conclusions regarding the fidelity of the approximation. For use in an optimisation 
algorithm it might be interesting to use a metamodel that provides a local error estimation (like in the 
models underlying the tool DesParO). These local error estimators can be used to refine the model 
constantly after each optimisation iteration. Such a sequential metamodel update helps to find a tried 
and proven optimal design. 

2.2 Automated metamodeling approach 

For the automated metamodeling approach described above, ClearVu Analytics currently offers the 
following metamodeling techniques: 
- Generalized Linear models [4] 
- Support Vector Machines [5] 
- Fuzzy models [6, 7] 
Additionally, the tool DesParO provides a highly sophisticated implementation of radial basis functions 
(RBF). The list of available formulations is constantly updated to account for the latest developments 
in this fascinating field of research.  
To find the best possible metamodel automatically and without user-interaction from a huge set of 
possible models types and parameters, two basic steps have to be performed: 
1. In a first step, the free model parameters are determined for each available metamodel type 

separately. Here, a „mixed-integer-step“-optimisation based on a cross validation scheme is used. 
As a result, the best metamodel set-up for each class of metamodels is found.  

2. Subsequently, all models that are „best-in-class“ are compared against each other to find the 
absolutely best model. The result of this investigation strongly depends on the method used to 
compare the models (hypothesis testing). The approach used in ClearVu Analytics can be found in 
more detail in [8]. 
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Figure 3: Workflow including crash and NVH load cases 
(orange box indicates part to be replaced by metamodel) 

3 Application example: multi-disciplinary optimisation of a complex automotive 
structure 

To illustrate the usage of metamodeling techniques in a complex development process, a multi-
disciplinary optimisation of a car structure will be given as an example.  
The aim of the 
optimisation in this 
example is to reduce the 
weight of a car body by 
varying 96 sheet metal 
thicknesses. Five crash 
load cases and two NVH 
load cases are 
considered imposing in 
total 28 constraints. For 
this optimisation an 
existing set of training 
data should be reused 
that was collected during 
an earlier investigation 
[9]. The training data 
consists of 297 different 
combinations of sheet 
thicknesses which were 
generated according to a 
DoE scheme and a 
subsequent evolutionary 
optimisation algorithm. PamCrash and MSC.Nastran were used for the crash and NVH simulations. 
They were running on different computer clusters using different number of CPUs. The single 
simulation runs had execution times between 18min (static torsion) and 22h (front crash).  
Based on this training data set, metamodels for all relevant output values (objective function and 

constraints) are determined. In the 
following optimisation, all underlying 
FE simulations are replaced by 
evaluations of the respective 
metamodels.  
The fitting process in ClearVu 
Analytics proposes a linear model 
(type „generalized linear model“) as 
the best model to approximate the 
relationship between mass and 
sheet thickness which correctly 
reflects the underlying dependency. 
For all other response variables 
(with are typically governed by 
significant non-linearity), 
metamodels of the type “support 
vector machines” (SVM) 
consistently show the best 
prediction performance.  
The optimisation based on the fitted 
metamodels is performed in the 
workflow and process automation 
tool OPTIMUS with the gradient 
based algorithm NLPQL. The 
choice for this algorithm was made 
on the fact that all metamodels 
used for the current optimisation 
have a clearly defined gradient 

which is not spoiled by numerical effects (as often seen in results of explicit simulation codes). The 
optimisation converges in 10 iterations with about 1000 predictions per metamodel i.e. about 29’000 

Figure 2: Disciplines and load cases considered for the MDO (from [9])
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Figure 4: Workflow for MDO when using metamodels to substitute the original simulations 

metamodel evaluations in total. The actual optimisation runs in this case takes about one hour where 
most of the time is spent for data transfer between OPTIMUS and ClearVu Analytics due to the fact 
that the interface for this prototypic application is realised by a simple ASCII file exchange. A more 
efficient integration is currently under development such that working on metamodels will be possible 
at real-time and optimisation runs will only take a few minutes. 
 
 

4 Conclusions and outlook 
From the preceding example the benefits of using metamodels in a complex simulation environment 
can be clearly seen.  
1. In most instances the necessary simulations to assess the different design alternatives can be 

performed in advance and wherever applicable in parallel. 
2. Metamodels represent a type of data storage and are not restricted for use in a specific 

optimisation but can be reused for alternative design studies or different optimisation runs (e.g. with 
modified constraint settings) without need for additional (expensive) simulations.  

3. The diverse metamodeling techniques allow for an extensive study of the governing functional 
relationships. Based on the fitted metamodels design sensitivities can be computed or logical rules 
can be derived. In this way, advanced metamodels provide a tool to gain a deep insight into 
product behaviour. 

Currently, a genetic interface of ClearVu Analytics and DesParO to well-established workflow 
management tools is under way and will be available in one of the next releases. This will complete 
the vision of metamodeling at the push of a button.  
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