Brick versus shell elements in simulations of aluminium extrusions subjected to axial crushing
In previous published literature, deviations in the mean crushing force and deformation pattern have been found between simulations with plane stress shell elements and experimental results for aluminium extrusions subjected to axial crushing. In the current study, simulations with solid and shell element models were carried out and compared to experimental results to study the influence of element type for this class of problems. The mean crushing force in the simulations using shell elements with through thickness stretch and solid elements were much closer to the experimental values than the plane stress shell elements. Concerning the deformation pattern, the solid element simulation exhibited a folding pattern much closer to the experimental one than the simulation with plane stress shell elements. To validate the conclusions drawn here, simulations of profiles with other geometries should be performed and compared to experimental results.
https://www.dynamore.de/en/downloads/papers/09-conference/papers/G-I-01.pdf/view
https://www.dynamore.de/@@site-logo/DYNAmore_Logo_Ansys.svg
Brick versus shell elements in simulations of aluminium extrusions subjected to axial crushing
In previous published literature, deviations in the mean crushing force and deformation pattern have been found between simulations with plane stress shell elements and experimental results for aluminium extrusions subjected to axial crushing. In the current study, simulations with solid and shell element models were carried out and compared to experimental results to study the influence of element type for this class of problems. The mean crushing force in the simulations using shell elements with through thickness stretch and solid elements were much closer to the experimental values than the plane stress shell elements. Concerning the deformation pattern, the solid element simulation exhibited a folding pattern much closer to the experimental one than the simulation with plane stress shell elements. To validate the conclusions drawn here, simulations of profiles with other geometries should be performed and compared to experimental results.