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e Challenges in discretization techniques in solid mechanics
e Novel mixed Finite-Elements for the large deformation framework
e L east-Squares FEM - a unifying discretization technique?

e A novel Kirchhoff-Love shell formulation
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Challenges in Discretization Techniques in Solid Mechanics

E =30x10’
v=03
R=100

L =200

h=1

P = 12,000

Displacements based low order Finite Element
formulations tend to behave suspiciously stiff in
various situations (e.g. incompressibility, bending
dominated problems, anisotropy, thin structures).. movie

rigid diaphragm P

. and their stress approximation suffers
due to oscillations, especially in the in-
compressible regime.

Non-standard discretization methods may improve the results tremendously.
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Kinematics: Deformation and Stress Measures

By /""& By
F
|
E5 €9
fol) el

Deformation gradient

F(X) := Gradyp(X) = Gradex
Right & left Cauchy-Green tensor; Green-Lagrange strain tensor
C.=F'F; b=FF"; E:=1C-1); LinE]=:¢
Piola transformation (o - Cauchy stresses, P - 15* Piola-Kirchhoff stresses)
tda =todA : onda=0CofFdA=PdA — P =0CofF = JoF '

Kirchhoff stress tensor 7 = Jo , 224 Piola-Kirchhoff stresses S := F~1P
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Some keystones in Mixed FEM for Solid Mechanics

REISSNER [1950]
On a variational
theorem in elasticity

WASHIZU [1955]
On the variational

principles in elasticity..

WILSON [1973]
Incompatible Displace-
ment Models

NAGTEGAAL ET AL. [1974]
On numerically accurate FE

solutions in the ...

BrEzz1 [1974]
On the existence, uni-
queness and ...

SiMO & RIFAT [1990]
A class of mixed assumed
strain methods and ...

PANTUSO & BATHE [1995]
A four-node quadrilateral
mixed-interpolated element...

WRIGGERS & REESE [1996]
A note on enhanced strain
methods for large deformations

KORELC ET AL. [2010]
An improved EAS brick element
for finite deformations

SCHRODER ET AL. [2011]
A new mixed finite element based on
different approximations of the...

AURICCHIO ET AL. [2013]
Approximation of incompressible
large deformation elastic ...
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HELLINGER [1913],

<—Encyklopadie der

math. Wissenschaften
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VEUBEKE [1965]
Displacement and
equilibrium models..

ZIENKIEWICZ ET AL. [1971]
Reduced integration technique
in general analysis of..

BABUSKA [1973]
The FEM with
Lagrangian Multipliers

HuGHES [1980]
Generalization of selective
integration procedures...

PIAN & SUMIHARA [1984]
Rational approach for assumed
stress finite elements

ARNOLD ET AL. [1984]
PEERS: A new mixed finite
element for plane elasticity

I

GLASER & ARMERO [1997]
On the formulation of enhanced
strain FE in finite deformations...

BISCHOFF, RAMM & BRAESs [1999]
A class of equivalent enhanced assumed
strain and hybrid stress FE

REESE, WRIGGERS & REDDY [2000)]
A new locking-free brick element
technique for large deformation...
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Mixed FEM in Solid Mechanics - a brief introduction

The terminus Mixed is used when different fields are introduced independently.

,» Classical* problem of Linear Elasticity:
Find w such that: Div|C: Viu|+ f =0 on B
Mixed two field problem of Linear Elasticity:

Dive+ f=0 on B
Find (o, u) such that:
C':o=Vu on B
Mixed three field problem of Linear Elasticity:
( Divo+f=0 on B

Find (e,u,0) such that: { o0 =C : ¢ on B

e = V°u on B
\
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Mixed FEM in Solid Mechanics - a brief introduction

Discretization of a Mixed-Galerkin approach results in an algebraic system of the

general form
A BT [d.,] |f
5 olla) -l

This saddle-point structure reveals the major challenge in the construction of
mixed finite elements, because existence and uniqueness of a solution cannot be
guaranteed in general.

The discretization of the individual field (dofs d,, and d,) have to be cautiously

balanced, with regard of the conditions of well-posedness for mixed FE by
Babuska [1973] and Brezzi [1974].

However, the immediate calculation of the field of interests (e.g. stresses,
pressure, ..) often worth the additional efforts.
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Assumed Stress Elements in Linear Elasticity

The solution of the elasticity problem with body B € R?, with e(u) = V°u

dive+ f =0 on B
C':0=¢(u) on B
u=20 on 0B,

on =1 on 0B,

is equivalent to the Hellinger-Reissner principle (satisfying the displacement
boundary conditions a priori) which seeks a saddle-point (o, u) € L?(B) x H}(B)

"o, u) = / (—10 Clio+o: s(u)) dV —/ u-tdA
B\ 2 OB,

6 IINR = /s codV — / bu-tdA =0 Véue H}B)
B OBs

5, MR — / so:(e(w)— C ' o)V =0 VYo e LX(B)
B

D UIS URG

ESS © Prof. Dr.-Ing. Jorg Schroder, Institute of Mechanics, Civil Engineering ‘ :
Open-Minded




Discretization

The displacements and stresses defined on the isoparametric space are

u=Nd and e=Bd

& = (611,002, 012)" = L(£) B,

where IN contains the bilinear shape functions, B its spatial derivatives, d the
nodal displacements, Q the element-wise stress unknowns and LL the
corresponding interpolation functions with the structure

E = diag(£117£227£12) .

b-parameter based interpolation, proposed by PIAN & SUMIHARA [1984]

Ly, = (1, n), Loy = (1, €), Ly = (1).

Uniform convergence has been proven by YU, XIE & CARSTENSEN [2011]
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Boundary Value Problem Hyperelasticity

Let the second Piola Kirchhoff stress S and the displacements u be independent
quantities. Then the BVP can be given with B € R’ F=I+Vyxu, C=FTF,

E=iC-1I)and P=FS

DivP+ f=0 on B

8§f) = F on B

U =4 on aBu t
\ OBt

PN =t on 0B, 0B,

where x(S) is a complementary stored energy. St. Venant type nonlinear elasticity

1
X(8) =358 : c':S.

Unfortunately, such explicit complementary functions only exist for special cases.
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Weak Form / Linearization

Assume that x(S) exists. The corresponding potential is given by

II7R(S, u) = /B(S : E — x(8))dV + I1*,

and the weak forms follow by
0 I = /6E:SdV+5uH‘”‘t =0
B

Sl = /BcSS:(E—é)SX(S))dV ~0

In cases where no complementary stored energy is known, the partial derivative
Osx(8S) := E“°™ can be computed iteratively in each integration point at fixed S:

T(Econs) =5 — ({9E¢(E)|Econs ~ 0
we have to update (until convergence)

Econs “— Econs ‘|'l82EE¢(E)|E00n3]_1/r(Econs)

—: D
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Cook’s Membrane Problem

A A L4
Neo-Hookean free energy: 1) = Z(JQ —1) — 5 +u | Ind + §(trC’ — 3)
Material parameter: E =200, v =0.4999
Displacement convergence: Necessary load steps:
12 ‘ ‘ #——r——-"‘_—_-_-ﬂ 14
10 | ,"—"— Q1-AS == | 12 1 Q1-AS ==l
L’ c Q1-EAS a 10l Q1-EAS ol
g | ™ Q1-FBar = m = - L Q1-FBar = m = P -
_ Qt =w - g 8 Qt=v- o’
< 6 i L. P
=] R -V § 6 . W -
A EREEE Al vomoo v 8 S
e 4 . ]
P R 4
2 ol '¢ L - |
» - - - A
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
Pressure Distribution 2 4 8 16 32 2 4 8 16 32
elements per edge elements per edge

Q1-EAS: EAS Element with 4 Parameters; SIMO & RiIFA1 [1990]

Boundary Conditions:

21::00: Q1-FBar: Selective reduced integration technique
ugy =0 of shape functions; SIMO, TAYLOR, PISTER [1985]
T =48 :
t=(0,10)T
Implementation in AceGen/AceFEM
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Cook’s Membrane Problem

A A L4
Neo-Hookean free energy: ¢ = Z(JQ —1)— 5 + | Ind + §(trC — 3)
Material parameter: E =200, v =0.4999
Time per lteration: Total Time:
0.01 — ‘ ‘ ‘ 16
Q1-AS b il
c Q1-EAS QI-AS =
2 Qi-FBar = m - P4 121 QI-EAS
£ 0005 | Ql - v - ’ | QiFBar-m - |
g — Ql =w-= -
> < sl
E =)
o 0.6
g 0.4 |
0.002 M" ] ozl
~ -4 -
Pressure Distribution 4 8 16 32
elements per edge elements per edge

Q1-EAS: EAS Element with 4 Parameters; SIMO & RiIFA1 [1990]

Boundary Conditions:

21::00: Q1-FBar: Selective reduced integration technique
ugy =0 of shape functions; SIMO, TAYLOR, PISTER [1985]
T =48 :
t=(0,10)T
Implementation in AceGen/AceFEM

U IS B R G ) ) . TR

(© Prof. Dr.-Ing. Jorg Schroder, Institute of Mechanics, Civil Engineering
Open-Minded



Cook’s Membrane

A A
Neo-Hookean free energy: 1) = Z(JZ — 1) — 5 +u | Ind + g(trC — 3)
Material parameter: E =200, v = 0.4999
Displacement Convergence: Necessary load steps:
14 T T 20 \
Q1-AS  w—
13 L : Q1-EAS
12 / | é_’ 15 | Q1-FBOa1r :
1t 3
S % 10
10 o
Q1-AS  m— §
° Q1-EAS ;= 5] /
8 | Q1-FBar 1
w — /
7 ‘ ‘ 0 ‘ ‘
100 1000 100 1000
Number of Elements Number of Elements
21::0(; Q1-EAS: EAS Element with 4 Parameters; SIMO & RIFAI [1990]
ug =0
ug =0 Q1-FBar: Selective reduced integration technique
x =48 : of shape functions; SIMO, TAYLOR, PISTER [1985]
t=(0,10,0)T

Implementation in AceGen/AceFEM
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Compression Block

A A
Neo-Hookean free energy: ¢ = Z(JZ — 1) — (5 + ,LL) InJ + g(trC — 3)
Material parameter: E = 4.82926, v = 0.498393
Displacement convergence: Necessary load steps:
°! | | 1A —
20 ﬁ , | QIEAS
Q1-FBar ==
Q1 —

19 +

18 +

us

Number of load steps

" 77 Q1-AS s
Boundary Conditions
Q1-EAS

16 1 2
Z=0:u3=0 Q1-FBar m—

Ql —
Z =50:u1 =0 15 160 1600 0 160 1600
ug =0 Number of Elements Number of Elements
X =50:u; =0 Q1-EAS: EAS Element with 4 Parameters; SIMO & RIFAT [1990]
Y =50:ug9 =0
X <50AY <50: Q1-FBar: Selective reduced integration technique
£=(0,0,-3)T of shape functions; SiMO, TAYLOR, PISTER [1985]

Implementation in AceGen/AceFEM
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Pinched Cylinder with rigid ends

2
Geometrical Data: R =100, L =200, h =1

¢:%(J2_1)_(§+'a> |nJ—|—g(tl’C—3)

Material Data: £ =3-10% v =10.3
Load: F' = 1200

9 3.5 T T . . .
ref — ]
8 | QI-AS e 3| = ]
-~
7t 1 Q1-EAS o5
6L | Q1-FBar ==
o 01 o 2 i
x °f X 45
< o 15¢
S 4 e
1L
°| /
o | 05 r
1 07
O L L L L L _0-5 L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
load x 1000 load x 1000
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Novel Approach: SKA - Simplified Kinematics for Anisotropy

Considering an additively decoupled strain energy
w — wisotropic_part(.) i wanisotropic_part (C)
where we have the following alternative for the modeling of g)isotropic—part.

e Standard approximation of the deformation gradient C
YiP = i (C)
e Volumetric-isochoric split of the free energy, C = FTF = J—2/3C
=P = vl T + wunimodular(é)
e Modified deformation gradient with constant volume dilatation 6

wi_p _ ¢<92/3 é)

— Different approximations for #, C' and C can be investigated
— The introduced kinematic-like field has to be controlled

J. SCHRODER, N. VIEBAHN, D. BALZANI, P. WRIGGERS [2016], A NOVEL MIXED FINITE ELEMENT FOR FINITE ANISOTROPIC
ELASTICITY; THE SKA-ELEMENT SIMPLIFIED KINEMATICS FOR ANISOTROPY, CMAME [2016]
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Hu-Washizu functional, Approximation of C

(c,c,s) :/Bw—p(cz) dv+/B¢a—p(C) dV+/B%S (C = C) dV +11°()

withHeXt:—/az-f dV—/ x- -ty dA
B OB

S 1 = /%5cz(gacwi—ﬁj+5) dV—/cSu-f dV—/ Su -ty dA
B S‘l:p B oB

a_p 1 _
/B : (Octp S)dV =10
s

Ocll

osll = /%58:(0—6) dV = 0.
B

The identified Euler-Lagrangian equations are

Div(F(S'"*+8))+ f=0, S=8" and C=C.
3
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3D Artery - Boundary value problem

Material model (Balzani et al. [2006]):

Iy

Yi_p = 01(11/3 —3)+e(I2+ 1,2 —2)
3

2
Yap = p_ ar(li+ T =I5 — 2)72
a=1

Material parameter (Brands et al. [2008]):

adv. med.
C1 0.6 17.5
£1 23.9 499.8
€9 10.0 2.4
a1 1503.0 30001.9
ar 6.3 5.1 26

B 49.0 43.39

D. BrANDs, A. KLAWONN, O. RHEINBACH, J. SCHRODER [2008], MODELLING AND CONVERGENCE IN ARTERIAL WALL
SIMULATIONS USING A PARALLEL FETI SOLUTION STRATEGY, CMBBE, 569-583

D. BALzaNi, P. NEFF, J. SCHRODER, G. HOLZAPFEL [2006] A POLYCONVEX FRAMEWORK FOR SOFT BIOLOGICAL TISSUES.
ADJUSTMENT TO EXPERIMENTAL DATA, IJSS, 6052-6070
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3D Artery - Supra-physical pressure - Set 2

. T T
2.5 T.P,
20F  —eee- SKAT,A,
1.5 — SKA-T,PoA,
10}
05k
00! 1 100 10° 10° d
Deformed configurations for
actual pressure: p =0
T T2Pg SKA-T2A, /
SKA-T5PyAq
Standard formulations Proposed formulations
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3D Artery - Supra-physical pressure - Set 2

' ' ' P
Deformed configurations for I 100 10* 10°
actual pressure: p = 5.82 - 103
T T2Pg SKA-T2A, /
SKA-T5PyAq
Standard formulations Proposed formulations
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3D Artery - Supra-physical pressure - Set 2

' ' ' P
4 6
Deformed configurations for I 100 10 10
actual pressure: p = 2.19 - 10*
T, SKA-T2A, /
SKA-T5PoAg
Standard formulations Proposed formulations

UNIVERSITAT
DUISBURG

ESSEN (© Prof. Dr.-Ing. Jérg Schroder, Institute of Mechanics, Civil Engineering A

Open-Minded



3D Artery - Supra-physical pressure - Set 2

' ' ‘ P
6
Deformed conflguratlons for I 100 10* 10
actual pressure: p = 103
40‘; SKA—T2A0 /
SKA-T,PyAq

Standard formulations Proposed formulations
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Motivation for Least-squares FEM

The advantage of using conform mixed (o, wu)-based RT\ P, _
methods lies in the stress approximation, here with Raviart-
Thomas functions in H(div), which yields continuous stress e

distributions in contrast to standard displacement methods \
(StDM).

Advantages of the classical Least-Squares Method:

e LS functional leads to a minimization problem
e Not restricted by the LBB conditon
e Symmetric and positive definite matrices

e A posteriori error estimator is provided

Disadvantages of the classical Least-Squares Method:

e Lower order elements have a poor performance

e Weighting of the individual residuals is questionable
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General construction of a Least-Squares Functional

To define the minimization problem, we apply the squared L?(B)-norm to a
first-order system of n differential equations, see e.g. CAI & STARKE [2004],

1 | . L
Flu, o) = 5(||wl(dwa + P22 + lln(o —C: ¥ u)HiQ(B)) s minimize.

.

with 04 4 F = 0. Requirements for approximation spaces (V', X) and finite
element spaces RT,, P, with

V={ueH'B)"} 2V = {ueH'B) :uls. € Pu(B.)"V B} ,

and furthermore

X ={o € H(div,B)"} D X} = {o € H(div,B)? : o|p, € RT;,(B.)" V B.} .
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Remarks on least-squares finite element methods

Stress-displacement LSFEM with use of Raviart-Thomas approximation functions

1 . L s
Flo,u) = §me (div o + f) H2L2(B) + §ch (0 —C: Viu) H%2(B)

and
1 : 2 1 Su) |2
Flo,u) = 5me (div o+ f) |72 + inc (0 = C: Vo) |25
1 :
n + Slwa ((@ = 0) x (div o + f) +axllo — o7]) 725

RTy P L ¢
e Disp. Nodes Vo = n—1

x Stress Nodes

\
\\ _1
N Y= ( 5 )

\\‘

RTy P, dof for 2D (left) and exemplarily basis function for lower edge (right)
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Approximation of reaction force for a cantilever beam

oB,

—_ — —
Q
S
S G—

standard disp.:

H = Z Fl

Ie0oBy,
L 1
V= Z Fx2
I€0By,
_ I I
M = E le-a}Q
I1eoBy

LSFEM:

H = 011d$2
0By,

b/q 021d$2
0B,

011'@2d1@
0B,

Lo = T2 — T M

v

M =

Reaction forces compared to analytical results (> H =0,) V =0.1,> M = 0.5):

H

0 et

a

-0.06

-0.08 |

0.1 b

-0.12 ¢

-0.14 +

-0.04 F

P
RV Py wyea = (1,1,1) == 1
RV Py, wmeo = (1,1,1) ==
R Py, g = (1,0.1,1)

0
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0.1 4= 5 0.4}
0.05 t‘;/———
0 0
i 09 P ==

0.05 |- RI Py e = (1,1,1) == T ' ' RT\Py e = (1,1,1) == ]

RIPy wpeo = (1,1,1) == RIVPy Wi = (1,1.1) ==
RIVPy e, = (1,0.1,1) o RIVPyy w0 = (1,0.1,1)
0.1 i | | L -0.4 L L L L
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
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Least-squares functional for finite strain elasticity

Extending the formulation by adding a mathematically redundant residual cf. [3],
[4], given by a stress symmetry condition, here in terms of the 2nd Piola-Kirchhoff
stresses S = F~!P; R3 =S — ST. The resulting least-squares functional yields

1 2(Dj - (Div
F o 5/Bwl(prHf) (Div P + f) dV
4+ %/wg(P—poé’Fw(C)) (P — po OFy(C)) dV
B
+ 5 [GAEP—FP)) (FP - (R 4V,
28

based on a Neo-Hookean type free energy function ¢(C) in terms of C = F1'F

H(C) = g(l1 —3)+ %(JQ —1)— (% + u) In.J

kg
3.

m

with the principal invariant [; =trC, J =det F and pyg =1

[3] Cai & Starke [2003], SIAM J. Numer. Anal. 41:715-730
[4] Schwarz et al. [2014], Comp. Mech. 54(1):603-612
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Cook’s membrane problem for finite strain elasticity
b

8
\

Left side: u = ((), O)T P N 16
. \
Right face: PN = (0,20)% \
\
\
A =432.099, v = 185.185, § 44
\
w1 =1, wy=1/p and w3 = 10/p \
\
\
§
o, distribution and convergence studie at (48,60): "
48
= 11 :
2 5
)
=
0.480e2 b} ) ............................................ a
i : ~
L 5
018302 g
Miscs s 10
r . 3y -
0 3567e3 o RT\P, —
057321 —C; RT,Py; —
AceFEM =S 9.5 |
0 50000 100000
neq
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Cook’s membrane problem for finite strain elasticity

Left side: u = (0,0)7

8
\
—
|

P.-N 16
Right face: PN = (0,10)* .
\
\
A = (432.099, 750, 9260, 92600) \
\
\ 44
v = (0.35,0.40099, 0.490197, 0.499002) §
\
\
w1 =1, wy=1/pand w3 =10/ \
T : : \
o, distribution and locking behvior for RT5Ps: A 21
48
3
g 1.1
- S 09y '
Dia0es S 08} | | ]
0.381e2 ~ 3 ;
0 3507 s,
Mises B 0.6 e A =432099 —
stress < 05p A =750 —
M?Zé7e3 = 0.4 — A =9260 — _
yl';?szm g 0.3 | A= 9%600 —_
AcerEl S 100 1000 10000 100000
neq
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Perforated plate example for finite strain elasticity

Boundary conditions, material properties and system: 2 — TPQQT T
- Left side u;1 =0, P33 =0 fod
- Lower side uo =0, Pjo =0 S
- Right side PN = (0,0)7 ! P
- Upper side PN = (0,50)% P )
~E=200,v=0.35 w; =1,1/p,1/u ' E 1

Convergence of |F — F}/|, order of convergence and us-displacement at (0,1):

1E-+00 - ! 5 1.05
1E-01 | 1.00 &
AL regular (rr) | adaptive (arD) 0.5
= 1E-02 I\ RT,P, | 0.83355 1.07582 e
pﬁ LSy 8 ;
| 5 RT,P | 1.28705 1.80055 = 00
K 1E-03 | ©
— : RT,P; | 1.58372 3.21487 £ 085
1E-04 L RTyP, | 1.87417 3.92780 0.80
1E-05 L S " 0.75 ‘
29E+03 1E+04  4E+404 2F+03 6E+03 1E+04
neq RT()_Pl arD &= RT1P2 arD o RT()Pl T RTleq IT — neq

RT,P; arD - RI3P, arD < RT\P v e RT; P, v —o
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A simple triangular finite element for nonlinear thin shells -
Statics, Dynamics and anisotropy

Acknowledgement: Paulo Pimenta

Based on the Kirchhoff-Love theory of plates, LOVE [1888].

Kinematic assumption: A straight normal of the reference mid-surface
remains a straight normal of the deformed mid-surface.

reference configuration deformed configuration

Plane-stress and shear-rigid assumptions lead to a stress tensor, which is
non-trivial only for the mid-plane of the shell, i.e. 73, = 7,3 = 0, whereas e; and

es span the mid-plane of the shell.

Assumptions are valid for “thin shells” with h/L < 1/10.
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Kinematics

Based on PIMENTA, NETO, CAMPELLO [2010] and using
the assumption of initial flat reference elements.

€3
Description of material point: \ a
Point on middle Surface + orthogonal director

Reference configuration: £ = ( + a”
with { =¢&,el, and a” = &3ef

Current configuration: € = z + a
with z =u —

Orthogonal director: a = Qa”
with rotation tensor Q = e; ® e

ox 6’:13
Deformation gradient: F' = — ® e R e
& 6504 853 3
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Enforcement of the C''-Continuity

The C'-continuity is asymptotically satisfied if 3
does not change during the motion — 33— (3" = 0.
This is enforced, using a penalty approach, by

1
[1Pe" — / 5 k (sin 8 —sin 87)*dI",

with sin (") = (eéz)B X egjﬁl) .7 and

k as a penalty parameter.
For this formulation no additional DOF is needed!

Alternatively the C''-continuity could be enforced,

using a Lagrange multiplier or the Augmented
Lagrange method.
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Enforcement of the C''-Continuity

Clamped Edges Branching shells

AV

Multiple branched shells are adopted

Clamping of free edges is enforced by
by minimization of

minimization of
pen,c 1 T T2 T en.b 1 . . T 2 T
rr T

1 . . r 2 T
-+ ik(smﬁAc—smﬁAC) dr-.
'r
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SIS (© Prof. Dr.-Ing. Jorg Schréder, Institute of Mechanics, Civil Engineering ‘ :
Open-Minded



Pinched Cylinder with rigid ends

v =3A(I5 — 1) — Inl3) + spu(f; — 3 — Inls)
Geometrical Data: r = 200, [ =400, h =1
Material Data: £ =3-10% v =10.3

E h3
Penalty Parameter: k = 5
12(1 — 12)
Boundary Conditions: Rigi d
Ig1d en
u2(£U1 = O) = O, U3($1 = O) =0 g
UQ(SUl — l) — O, U3(CE‘1 — l) =0
F=54-10%
Frm4r—m—m————F—+————+7+——+—+ 7+
. —— w3 of Point A
5-10% |
- = uy of Point B
4-10* [ Sansour Kollmann
3-10% |
2-10% F
110t | movie
L ._80 L
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Plate with stiffeners

T Cross sections N-N:
Geometrical Data: | = 25.4, h = 0.254 @ y
: ©r 1
Stiffener: (b)hs = 1.27, (c)hs = 0.508 L
: (b) * i
Material Data: E = 117.25, v = 0.3 "
E h? TR
Penalty Parameter: k = >
12(1 — v2) Y
L (C) * ~- T th,
I ; I L h
0.8
0.7 + |
0.6 - -
0.0 §
S 04 F |
0.3 B H H B H : N
0.1 -/ ......................... b) Eccentric Stiffen::lng —-—
Deformations scaled by factor 10. 0.0 | l(c Cl'oncellltrlc §t1ffen|1ng .
0 200 400 600 800 1000 1200 1400 1600
p x 107°
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Dynamic reversion of clamped dome

Geometrical Data: r = 0.05, h = 103

Material Data: £ = 10°, v = 0.499, p = 1000
E k3

Penalty Parameter: k =

12(1 — 12)
Newmark Parameter: 3 = 0.3025, v = 0.6
Boundary Conditions: u(x3 = 0) = 0,

us(x = (0,0,1)) = —2r

Time: 0.00 Time: 1.25 Time: 2.50 Time: 3.75 Time: 5.00

movie
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Thank you for your attention

Acknowledgement: DFG Grants SCHR 570/23-2; 570/34-1;

X SPP Reliable Simulation Techniques in Solid Mechanics.
"' Development of Non-standard Discretization Methods,
1748 Mechanical and Mathematical Analysis

JoZze Korelc - For the deployment of AceGen and AceFEM
Korelc J., Automatic generation of finite-element code by simultaneous optimization of expressions,

Theoretical Computer Science, 1997, 187:231-248

Korelc J., Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes,
Engineering with Computers, 2002, 18:312-327
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Least-squares functional for finite strain elasto-plasticity

First-order system, based on the multiplicative split of F' = F°¢FP,

b¢ = FC?~'FT, 4(b°) = £ det b° + Ltrb° — (& + p) In vdet be:

0y (b°)
Obe

1 . e
F(P,u) = 5 ([ (Div P+F)[i+lwa(PFT =222 b) 3+ |ws( PFT—F P) )

Principle of max. Dissipation; v. Mises criterion ®=|| devr\]—k\/g(yo + B(a)) <0

L(7,8,7) = —Dint(7, 8) + v (7, 8) — stat. with >0

n

0gL = dzy\/g = ozn+1—ozn+\[)\

fulfilling the yield criterion at time £, yields A = Aty = 32

1
0L = §£(b€)b€_1:—7n = CP ! =F,! exp[-2\n]F,,,CE~ 1,

HiLr [1950], WEBER & ANAND [1990], ETEROVIC & BATHE [1990], LUBLINER [1990)]
SIMO [1988A,1988B,1992,1998|, MIEHE & STEIN [1992], ...

D UIS URG

ESS © Prof. Dr.-Ing. Jorg Schroder, Institute of Mechanics, Civil Engineering ‘ :
Open-Minded




Cook’s membrane problem for finite strain plasticity

. T PN
Left side: u = (0,0,0)
- . _ T |
(a) Right face: PN = (4.5,0,0) 1/ i
- . _ T !
(b) Right face: PN = (0,2.5,0) @ ®
E = 2069, v = 0.29,
14
vo = 4.5, h =15
Z2
w1 =1, wy=1/pand w3 =10/
1 4
_ i 48
Convergence studies for load cases (a) and (b): ?
75 . 9 ,
— - —
5 3
E | E
5_
% | - Galerkaz . Z%_ C Galerin Pz e
5  LSFEM R1,P, —e— g A i '. : LSFEM {?!bpg —o—
’ 0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
(a) Number of equations neg (b) Number of equations neq
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Cook’s membrane problem for finite strain plasticity

Plot of von Mises stress o,,; for PN = (0,2.5,0)7"

OuvM

0.576e1
0.543e1
0.510e1
0.47ge1

RIo P, st Py

Plot of equivalent plastic strains o for PN = (0,2.5,0)%"

W T——

8%

0.933e-1

0.500e=1

0.666e-1

b dh0e-1
. 8=

0.266e-1 P2

0.133e-1

RTyPs

DUISBURG

ESSEN (© Prof. Dr.-Ing. Jorg Schréder, Institute of Mechanics, Civil Engineering A
Open-Minded



Hyperbolic shell (BALzANI ET AL. [2008])

I

v=a s 3 +ea(ls? + 137 —2) + an(lily — I5 — 2)*?

Geometricgl Data: Ro =5, H =12, h =0.05
Material Data: C7 = 100, ¢; = 2000, €5 = 10
IF Tr. Iso.: a; = 1000, g = 2.3

Penalty Parameter: k = 10%

Isotropic Transversal Isotropic

AP

AL

0.166e1 4
0.133e1
0.999

0.666

0.333

0

-0.33

-0.66

-1.

-0.13e1
.—U.'IE-E.-'I

Uz
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Algorithmic Treatment

ELEMENT LOOP
(1) Update displacements and stresses (Newton iteration k+1)
d=d" +Ad, B ="+ ApB
INTEGRATION LOOP
(2) Compute stresses S and Green-Lagrange strain tensor E in each Gauss Point:
S=LB E=Bd
Read from history: E<°"™
CONSTITUTIVE LOOP
(3) Compute residuum: r(E“™) = S — §°™
with S°™ = Ogcons) (")
(4) Update: E°™ = E°™ + D : »(E“™)
with D = (Ogcons S<™) !
(5) Check convergence
Ir ||D: »(E®)|]? < tol
THEN Update History E“°"™ and exit CONSTITUTIVE LOOP
(6) Check divergence

IF Njter > Mol THEN Stop Calculation

(7) Determine and export element stiffness and rhs-vector
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Deformation of Line-, Area- and Volumeelement

BO L = ‘Pt(X) Bt

Cof [ F] det[F]dV
—

FdX

current conf.

reference conf.

Deformation of infinitesimal line element dax = F'dX

Deformation of vectorial area element dA:
1 2 1 2
da = (FdX)x (FdX)=Cof F(dX xdX) = Cof|[F|]dA
Deformation of infinitesimal volume element

3 3 3
dv=da-FdX= Cof|[F|dA -FdX= JdA -dX= JdV
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Summary of Balance Equations in the Material Setting

Conservation of mass (densities pg € By, p € By)
po=pJ
Balance of linear momentum (body force pob)
Div P + pob = pox
Balance of moment of momentum
PFT = FP?
Balance of energy (internal energy e, heat flux vector go on 9By)
pPo € = P-F—Divqo—l—por

Clausius-Duhem inequality (free energy 1), entropy 7, absolute temperature ©)

. L. 1
P-F—po(er@n)—@qo-Grad@ZO
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Definition of Hyperelasticity

A material is termed hyperelastic if the existence of a free-energy v is postulated.

Evaluating the Clausius-Duhem relation, neglecting thermal effects yields

Y

P-F—po(F)=0 — P=po;r

Internal work during quasi-static process in time interval [tg, t1] for homogeneous
deformation depends only on the values of 9 at the initial and final placement:

t1 . t1 a¢ i,
P - Fdt = Fd dt = Fy) — U(F;
i i / g Edt=p | it = (6(F) - V(F)

Internal work during closed process is zero, i.e.

" / W dt + po / " dt = po ($(F) — 9(Fo)) + po (0(Fo) — (F1)) = 0

where FO = F(to) , F1 = F(tl) , F2 = F(tg) = FO
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