

Workshop: Dummy positioning

Alexander Gromer DYNAmore Users Forum 2014 Bamberg, October 7th – 8th 2014

Incorporation of a dummy model into a car model

Positioning of the dummy

Seat deformation

Belt routing

DYNAmore/Humanetics: pre simulation template

- We provide a pre-simulation input where angles have to be adjusted
- Position your dummy in the preprocessor. Keep modified angles in mind.
- Set up a pre-simulation by inserting the angles into the delivered template
- Run the pre-simulation
- Extract nodes of the deformed dummy model into the original dummy input

• Note: There are artificial joints for thorax bending

DYNAmore: New positioning procedure

- Main goal: simplify the positioning of the WorldSID 50th
- 1. Generate your target procedure in your preprocessor. Do not worry about penetrations, Save it as a normal key file.

New positioning procedure

2. Run the script which is enclosed in your delivery package.

psg_wsid50_v3.0 -d dummyinput_origin.key -t target_pos_dummy.key

The script generate an positioning simulation file dummyinput_origin_positioning.key

3. Run the input in dummyinput_origin_positioning.key LS-DYNA (recommended version R6.1.2) final

4. Setup the positioned dummy model with the nodal coordinates of the last state of the positioning run.

Dummy positioning

Very helpful: DYNA tool plot2coor

- Generate *NODE cards from d3plots
- Choosing a certain state
- Replace *NODE cards from existing keyword inputs
- plot2coor -s last -in -k dummy.key d3plot -> dummy.key.plot2coor
- plot2coor -s last -in -k seat.key d3plot -> seat.key.plot2coor

Tutorial: Dummy positioning in Primer

- PRIMER provides a function for dummy model positioning
- PRIMER generates cables which pull the dummy into the desired position

Tutorial: Dummy positioning in Primer

- 1. Open the dummy positioning tutorial model
- 2. Position the H350 to:

H-Point (-1975.0 350.0 540.0)

Pelvis & Thorax Angle to -23°

- 3. Save the origin dummy position as "origin"
- 4. Move legs and arms in right position
- 5. Save the positioned model as "target"
- 6. Follow the "dyna" positioning guide
- 7. Run the simulation

B. After the run: include the resultant nodal coordinates to your dummy model

Dummy positioning

Humanetics: new recommended procedure

- Due to material encryption PRIMER is not able to work
- Humanetics provides modified Tree files for each dummy model

Seat deformation

Getting the dummy into the seat by prescribed motion

- Only short simulation runs are needed (about 0.1s)
- At the end of the pre-simulation: no equilibrium!
- End-position is prescribed
- Apply slight damping
- For whiplash often not accurate enough

Seat deformation

Getting the dummy into the seat by prescribed motion

- Therefore some different methods are established.
- In principal the dummy is set to rigid in any kind of way:
 - Cut out outer skin and set rigid
 - Use rigidify option of PRIMER
 - Use defomable2rigid of LS-DYNA
- Move the rigid dummy into the seat by using a LS-DYNA simulation.
- Most popular keyword is: *BOUNDARY_PRESCRIBED_MOTION
- Write out the nodal coordinates of last state and put into original seat model.

Seat deformation

Getting the dummy into the seat under gravity load

- Long simulation runs are needed (about 1s)
- At the end of the pre-simulation: equilibrium!
- End-position is unknown
- Apply slight damping
- Is required for high validated whiplash simulations

Including of pre-stressed vehicle seats

- *INITIAL FOAM REFERENCE GEOMETRY. Only possible with MAT 57, 83, 77, 181, 183. Invokes initialization of deformation gradient of the element.
- This is also used for the deformable dummy parts like pelvis flesh.
- Easy to use.
- Parts can be arbitrary moved without loosing the correct initial stress
- Only available for solid elements
- For shells and beams use *INTERFACE_SPRINGBACK_LSDYNA. The stresses of the last state will be written into the dynain file in keyword format

Tutorial: set up a prescribed seat deformation simulation

- 1. Read in your positioned dummy model in PRIMER
- 2. Use the rigidify feature to fix the dummy skeleton to one big rigid part
- 3. Write out the modified Dummy model
- 4. Adjust the *DEFINE_TRANSFORMATION to avoid initial penetrations
- 5. Run the model

6. Insert the deformed geometry and initial stresses into your origin models

Belt should have contact to seat

Belt routing

Tutorial: get your positioned dummy belted

- 1. Read in your positioned dummy and seat model in PRIMER
- 2. Go to the Occupants Seatbelt routine

General recommendations:

- Generally use SOFT options for contact definitions
- Do not try to save elements for contact in order to reduce run time of the model

The bucket sort algorithm will take care about that

- Work with the DTSTIFF flag to make models more independent form time step size
- Try to avoid large penetrations and x-edges
- Work with null shells coats for contact
- Do not double/triple contact definition(!!!!!)
- For better scalability / run time performance / clarity use as less contacts as possible

No contact definitions needed:

- Airbag self contacts / airbag to housing contacts should be included in the airbag component model
- Internal dummy model contacts are included in each model
- These contact definition are part of the validation of each component and should not

be touched

Excluded parts

Global contact definition:

- The parts of any model component which should be considered for contact should be gathered in a *SET_PART
- Most elegant way: 1 *CONTACT_AUTOMATIC_SINGLE_SURFACE per occupant model

Standard Surface-to-Surface definition:

- *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE without edge checking
- Typical usage: dummy to interior
- Should work fine for 99%
- In rare cases edge
 - checking for some
 - components is needed

slave parts master parts

Best practice: standard surface-to-surface definition

Surface-to-Surface definition with edge checking:

- *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE with SOFT=2
- Typical usage: bags and belts to interior/dummy
- Slightly higher computational costs than standard (SOFT=1)

definition

slave parts master parts

Best practice: surface-to-surface definition with edge checking

Best practice: beam contact

- *CONTACT_AUTOMATIC_GENERAL
- High computational costs -> selective usage

Best practice: tied contact

- *CONTACT_TIED_SHELL_EDGE_TO_SURFACE_BEAM_OFFSET
- Suitable for most component to component fixations
- Robust and stable
- Penalty contact
- Can cause energy loss in glstat

\$ SSIDI MSID SSTYP MSTYP SBOXID MBOXID SPR MPR 1 2 2 2 0 0 0 0 \$ FS FD DC VC VDC PENCHK BT DT \$ SFS SFM SST MST SFST SFMT FSF VSF a-s-a-p a-s-a-p a-s-a-p a-s-a-p s-s-a-p SFST SFMT FSF VSF	*CONTACT_TIED_	SHELL_ED	GE_TO_SURF	ACE_BEAM_C	FFSET				
1 2 2 2 0 0 0 0 \$ FSI FDI DCI VCI VDCI PENCHKI BTI DTI \$ SFSI SFMI SSTI MSTI SFSTI SFMTI FSFI VSFI a-s-a-p a-s-a-p a-s-a-p a-s-a-p a-s-a-p SFMTI SFMTI SFMTI SFMTI	\$ SSID	MSID	SSTYP	MSTYP	SBOXID	MBOXID	SPR	MPR	
\$ FS FD DC VC VDC PENCHK BT DT \$ SFS SFM SST MST SFST SFMT FSF VSF a-s-a-p a-s-a-p a-s-a-p	1	2	2	2	0	0	0	0	
\$ SFS SFM SST MST SFST SFMT FSF VSF a-s-a-p a-s-a-p	\$ FS	FD	DC	VC	VDC	PENCHK	BT	DT	
\$ SF8 SFM SST MST SFST SFMT FSF VSF a-s-a-p a-s-a-p									
a-s-a-p a-s-a-p	\$ SF S	SFM	SST	MST	SFST	SFMT	FSF	VSF	
			a-s-a-p	a-s-a-p					

a-s-a-p: as small as possible

Best practice: *DEFINE_FRICTION

- Define separate friction values for each component to component contact when using a single contact interface
- A lot of contacts impede the scalability of your models!
- Invoke *DEFINE_FRICTION by setting FS=-2 and FD=DFID
- Use the *SET_PARTS of the contact interface and *PARAMETER for the friction values

*DEFINE_FRI	CTION						
\$ DFID	FSI	। टा स	DC	VC			
1	0.3	0.2	1	20			
\$ PID_I	PID_J	FS	FD	DC	VC	PTYPEI	PTYPEJ
dummy	seat	&fs_d2s	&fd_d2s	1		PSET	PSET
\$ PID_I	PID_J	FS	FD	DC	VC	PTYPEI	PTYPEJ
-l	footwell	fs d2f	&fd d2f	1		PSET	PSET

Thank you very much for your attention!

Alexander Gromer

DYNAmore GmbH, Germany

alexander.gromer@dynamore.de