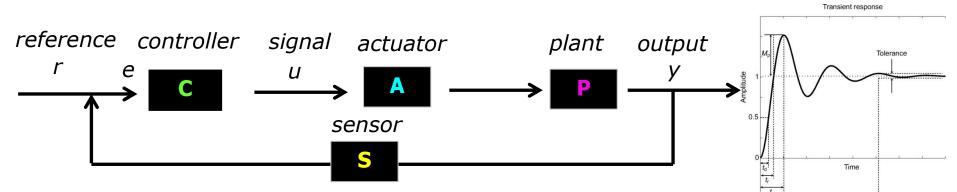
Control System

October 12th 2016, Bamberg, Germany

Charlotte Keisser DYNAmore France, Versailles

Isheng Yeh Livermore Software Technology Corporation, Detroit

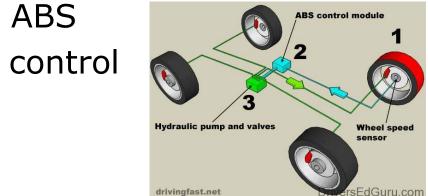
Contents


- Introduction to Control System
- Overview of control capabilities in LS-DYNA
- Control design toolbox in LS-DYNA
- *CTRLLER_PLANT: Model derivation
- PIDCTL and DELAY
- Piezoelectric material
- Next Steps

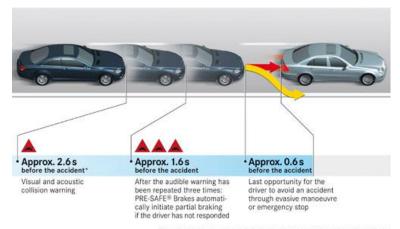
Introduction to Control System

 Control: process of making a system of design variables conform to some desired values

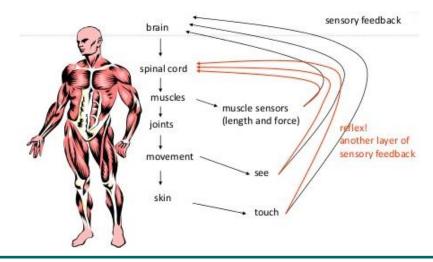
- **Reference**: the desired output
- Sensor: provides measurement of output
- Actuator: converts the control signal to power signal
- Plant: the physical part to be controlled, can be in the form of a linear system (represented as a transfer function or state space), or FEA model



Introduction to Control System

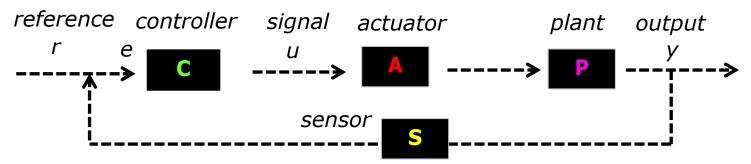

Control in your daily life

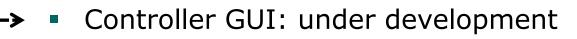
Cruise control



Pre-crash system

*Time calculated by the system until the impact where the relative speed remains unchanged


Human closed-loop system



Overview of Control Capabilities in LS-DYNA

С

Ρ

- *MAT_PZELECTRIC for piezoelectric material-based sensor and actuator
- *SENSOR

Development status

S

To be tested

done

Control design toolbox in LS-DYNA

*CTRLLER keywords

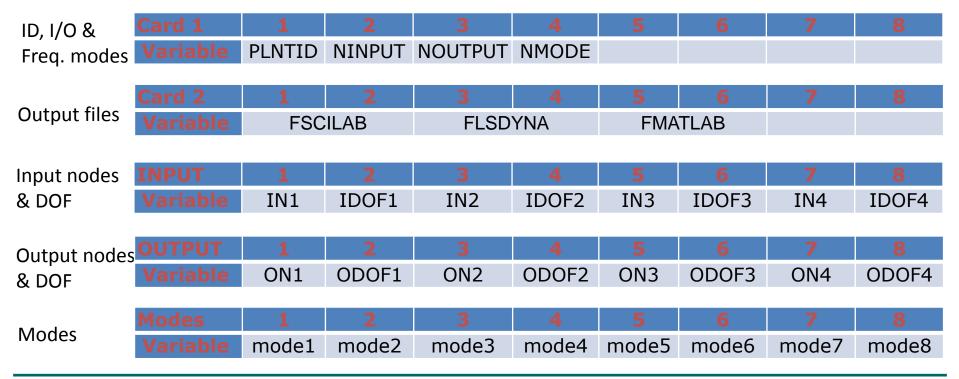
- System definition
 - *CTRLLER_ SYSLIN, TF, etc.
- Analysis
 - *CTRLLER_ RANK, ROOTS, SVD, EIG, PLZR, etc.
- Solver
 - *CTRLLER_ LSQ, ODE, CSIM, etc.
- Control tools
 - *CTRLLER_ PID, LQR, LQG, KALMAN, etc.
- Model Reduction
 - *CTRLLER_ BALANCMR, MINREAL, etc.
- System connections
 - *CTRLLER_FEEDBACK, etc.

Control design toolbox in LS-DYNA

Graphical User Interface

- Currently available: System definition
- Next focus: control tools, system connections, running ls-dyna solver, model reduction and analysis
- Long term focus: graphical result viewing

🔯 *test1.lsctrller - LS-DYNA Control Toolbo	box 1.0.0		bit LS-CTRLLER 1.0.0	X
Syslin syslin	×	°?	LSTC Livermore Softw Technology Corp	LS-CTRLLER User Interface Version 1.0.0 (Revision 107246) by Yare Livermore Software Technology Corporation 0. (C) Copyright 1999-2015 - All Rights Reserved
Conti	ntinuous Linear System: State-space model parameters		New project	Open recent project
Array A ma dime B ma dime C ma dime D ma empi X0 in	call: trix definition: [1.0, 2.0E-1, 3; 4.0e+2 -5.1 +6;] with or without []. ay definition: [1.0, -2.0E-1 3.0e+2] or 1.0; -2.0E-1 3.0e+2 matrix mension (n,n) matrix mension (n,p) matrix mension (q,n) matrix mension (q,n) mitial state npty or dimension n OK		Working Directory Conversion Create Working Directory Browse Browse Filename Isctriller Problem Description Create	test1bis.lsctrller C:\Users\keisser\Desktop\Ordi_boulot\testGUI\ test1.lsctrller C:\Users\keisser\Desktop\Ordi_boulot\testGUI\ test2.lsctrller C:\Users\keisser\Desktop\Ordi_boulot\testGUI\ C:\Users\keisser\Desktop\Crdi_boulot\testGUI\ C:\Users\keisser\Desktop\LSCTRLLER_GUI\trun III Quit Help



*CTRLLER_PLANT: Model derivation *CTRLLER_PLANT

A modes-reduction method for model order reduction (MOR)

$$M\ddot{d} + C\dot{d} + Kd = F \implies \dot{x}(t) = Ax(t) + Bv(t)$$
 State equation
 $y(t) = Cx(t) + Du(t)$ Output equation

*CTRLLER_PLANT: Model derivation

example: Vertical vibration

Matrix A

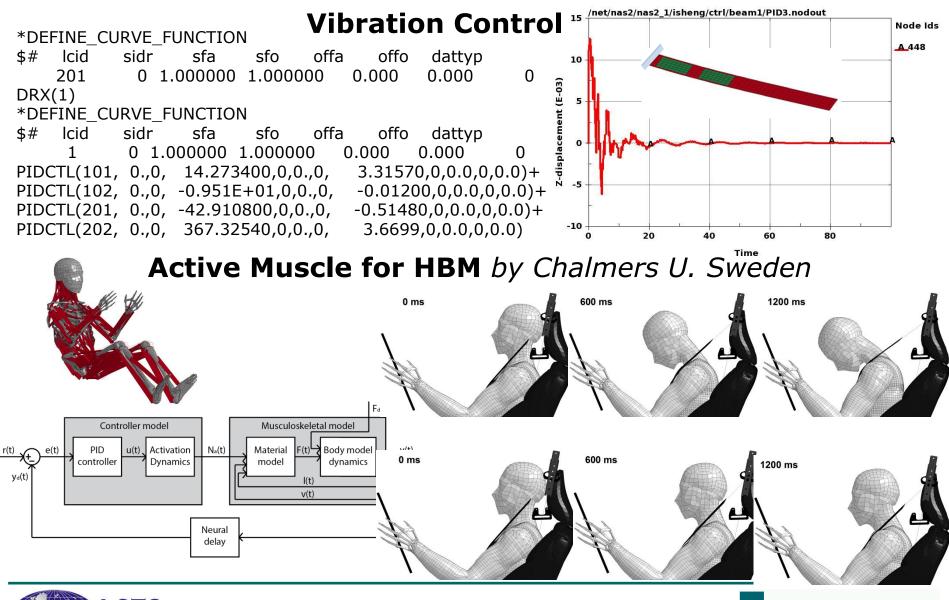
							•			
a	=									
	ο.	0.	ο.	0.	ο.	1.	ο.	ο.	ο.	ο.
	0.	0.	0.	0.	0.	ο.	1.	ο.	ο.	ο.
	0.	0.	0.	0.	0.	ο.	ο.	1.	ο.	ο.
	0.	0.	0.	0.	ο.	ο.	ο.	ο.	1.	ο.
	0.	0.	0.	0.	0.	ο.	ο.	ο.	ο.	1.
-	- 12774.	0.0000002	- 6.881D-08	0.0000002	5.576D-08	ο.	ο.	ο.	ο.	ο.
	0.0000002	- 460440.	0.000001	0.0000002	- 6.525D-08	ο.	ο.	ο.	ο.	ο.
	9.658D-08	1.201D-08	- 3359300.	0.0000001	- 0.000003	ο.	ο.	ο.	ο.	ο.
	0.0000001	0.0000002	- 0.0000002	- 11739000.	5.851D-08	ο.	ο.	ο.	ο.	ο.
	- 1.626D-08	- 4.630D-09	- 0.0000003	1.472D-08	- 25154000.	ο.	ο.	ο.	ο.	ο.

Matrix C Matrix B										0.	
: =										0.	0.
										0.	0.
166	. 149.56	118.58	74.446	- 31.458	Ο.	0.	0.	0.	0.	0.	ο.
166	. 149.6	118.93	75.458	- 32.592	Ο.	0.	0.	ο.	0.	0.	ο.
166	. 149.56	118.58	74.446	- 31.458	Ο.	0.	ο.	0.	0.	- 166.	- 166.
ο.	0.	ο.	ο.	ο.	166.	149.56	118.58	74.446	- 31.458		
ο.	ο.	ο.	ο.	ο.	166.	149.6	118.93	75.458	- 32.592	149.56	149.5
ο.	0.	ο.	ο.	ο.	166.	149.56	118.58	74.446	- 31.458	- 118.58	- 118.5
										- 74.446	- 74.44
										- 31,458	- 31.4

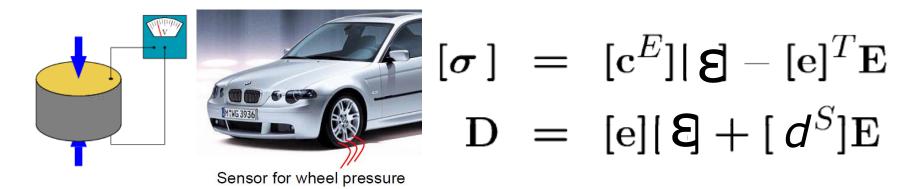
Ρ

*CTRLLER_PLANT: Model derivation

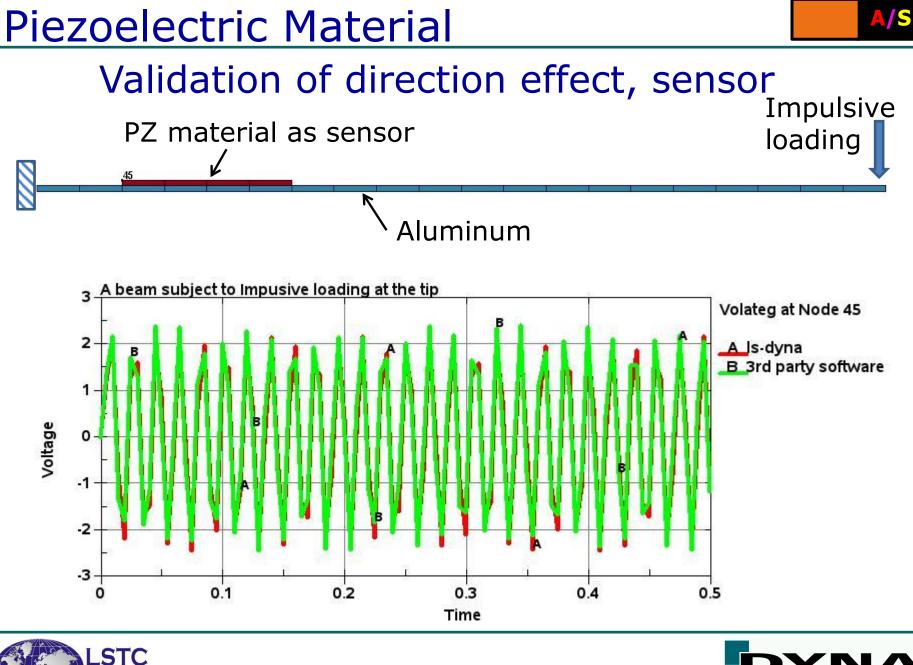
example: Vertical vibration


Validation of derived plant model:

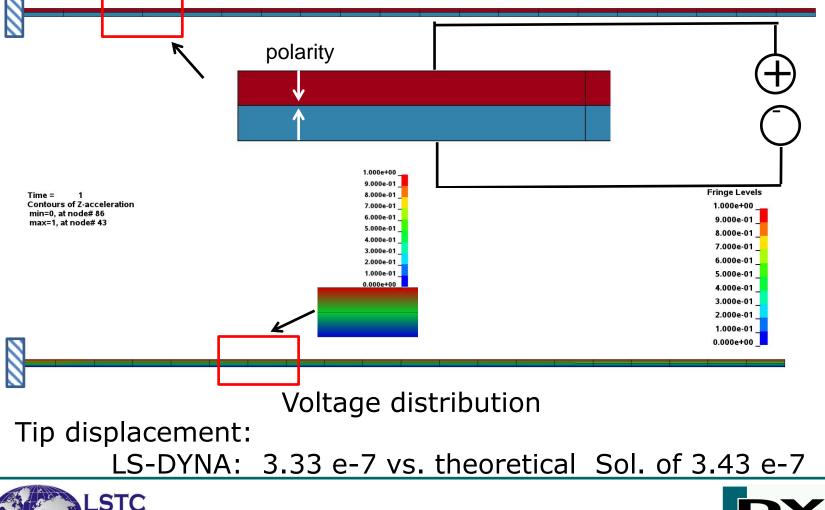
Damped solution with initial Solution with initial stepvertical velocity loading LS-DYNA eigenvalues at time 1.00000E+0 V_0 Loading at the tip 5 A Isdyna-explicit/no-damp Damped solution with initial velocity **B** Isdyna-explicit/damped Node Ids C scilab/no-damp 4 D scilab/damped A ls-dyna/explicit 14 **B** scilab 12 3 10 Displacement-Z (E-03) Disp. Z 8 B R D D 2 6 4 1 2 0 0 -2 0.02 0.04 0.06 0.08 0.1 ò 0.02 0.08 0.1 0.04 0.06 0.00000E+00 time


PIDCTL and DELAY

Piezoelectric Material


- Piezoelectric effects:
 - Direct, sensor: generates electric potential when subject to mechanical stress.
 - *Inverse*, actuator: Application of an electric field (voltage) results in mechanical strain.

- LS-DYNA
 - *MAT_ADD_PZELECTRIC for PZ coefficients and dielectric coefficients
 - *BOUNDARY_PZEPOT for electric potential specification



Piezoelectric Material

Livermore Software Technology Corp.

Validation of inverse effect, actuator

Bimorph beam subject to 1-V across the thickness

Next Steps

Achieve in two years

- Gather opinions from potential users
- Improve currently implemented capabilities with more testing
- More applications like MBS control, vibration control and acoustic control with piezoelectric material
- More FEM model reduction methods and applications
- Thanks to
 - Katharina Witowski for helping in GUI implementation
 - François-Henri Rouet and Cleve Ashcraft for mathematical consultations
 - Zhidong Han for enhancing PIDCTL implementation

Thank you for your attention

